Document Type: Original Article


1 Department of Horticultural Sciences, Faculty of Agriculture, Ilam University, Ilam, Iran.

2 Department of Horticultural Sciences, Sari Agriculture and Natural Resource University, Sari, Iran.


Purpose: Rose cut flowers have a short postharvest life, which can be increased using different treatments. Thus, an experiment was designed to determine the effect of hot water (one min) and chemical solutions (pulse treatment for 20 h) on the postharvest quality of cut rose flowers cv. Baraka. Research Method: Hot water treatments contain 50, 55, and 60 °C, chemical treatments consist of catechol (5 and 10 mM), sodium azide (0.05 and 0.1 mM) and sodium metabisulfite (5 and 10 mM). Afterward, for the evaluation of associated traits with longevity, the flowers were kept in a vase solution containing sucrose (3%) and hydroxyquinoline (8-HQ at 200 mg. L-1). Findings: The results showed that the vase life of cut flowers extended about four days by the application of chemical treatments as compared with control. The maximum vase life (9.9 days) observed in 0.05 mM sodium azide and 10 mM catechol (9.7 days). Also, the vase life of cut flowers increased 3.7 days by hot water treatments (at 50 and 55 °C) in comparison to the control. Moreover, the results revealed that the catechol, sodium azide and sodium metabisulphite treatments delayed flower senescence and maintained leaf chlorophyll and petal anthocyanin content. The lowest content of lignin was obtained in 10 mM catechol, and 0.1 mM sodium azide. Research limitations: There was no significant limitation to the report. Originality/Value: Overall, the results showed that catechol and sodium azide were the most effective treatments to increase the vase life of rose cut flowers.


Main Subjects

Abri, F., Ghasemnezhad, M., Sajedi, R. H. & Shiri, M. A. (2014). The effect of ascorbic acid in delaying biochemical changes during senescence and extension flowers vase life in rose. Journal of Horticulture Science, 28 (1), 25-33. (in Farsi).

Ahmad, I., Joyce, D. C. & Faragher, J. D. (2011). Physical stem-end treatment effects on cut rose and acacia vase life and water relations. Postharvest Biology and Technology, 59(3), 258-264.

Bolla, A., Voyiatzis, D., Koukourikou-Petridou, M., & Chimonidou, D. (2010). Photosynthetic parameters and cut-flower yield of rose ‘Eurored’ (HT) are adversely affected by mild water stress irrespective of substrate composition. Scientia Horticulturae, 126(3), 390-394.

Celikel, F. G., Joyce, D. C., & Faragher, J. D. (2011). Inhibitors of oxidative enzymes affect water uptake and vase life of cut Acacia holosericea and Chamelaucium uncinatum stems. Postharvest Biology and Technology60(2): 149-157.

Damunupola, J. W., Qian, T., Muusers, R., Joyce, D. C., Irving, D. E., & Van Meeteren, U. (2010). Effect of S-carvone on vase life parameters of selected cut flower and foliage species. Postharvest Biology and Technology, 55, 66-69.

Fallik, E. (2004). Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biology and Technology32(2), 125-134.

Fanourakis, D., Giday, H., Li, T., Kambourakis, E., Ligoxigakis, E. K., Papadimitriou, M., Strataridaki, A., Bouranis, D., Fiorani, F., Heuvelink, E.  & Ottosen, C. O. (2016). Antitranspirant compounds alleviate the mild-desiccation-induced reduction of vase life in cut roses. Postharvest Biology and Technology117, 110-117.

Fanourakis, D., Pieruschka, R., Savvides, A., Macnish, A. J., Sarlikioti, V., & Woltering, E. J. (2013). Sources of vase life variation in cut roses: a review. Postharvest Biology and Technology78, 1-15.

Gerabeygi, Kh. (2018). Effect of laccase enzyme inhibitor compounds on bent neck gerbera cut flower.  MSc thesis, Ilam University, Ilam, Iran (in Farsi).

Ghafouriyan, M., Roein, Z., & Shiri, M. A. (2019). Effect of inhibitors of lignin biosynthesis on vase life of gerbera cut flowers. Iranian Journal of Horticultural Science, 49(4), 903-914. (in Farsi).

Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current protocols in food analytical chemistry. John Wiley and Sons, Inc., Hoboken.

Hara, A. H. (2012). Heat as a sustainable postharvest disinfestation treatment for export horticultural crops. In I International Conference on Postharvest Pest and Disease Management in Exporting Horticultural Crops, Bangkok, Thailand. 45-54.

Hassan, F. A. S., Ali, E. F., & El-Deeb, B. (2014). Improvement of postharvest quality of cut rose cv. ‘First Red’ by biologically synthesized silver nanoparticles. Scientia Horticulturae179, 340-348.

He, S., Joyce, D. C., Irving, D. E., & Faragher, J. D. (2006). Stem end blockage in cut Grevillea ‘Crimson Yul-lo’ inflorescences. Postharvest Biology and Technology41(1), 78-84.

Holzwarth, M., Wittig, J., Carle, R., & Kammerer, D. R. (2013). Influence of putative polyphenoloxidase (PPO) inhibitors on strawberry (Fragaria x ananassa Duch.) PPO, anthocyanin and color stability of stored purées. LWT-Food Science and Technology52(2), 116-122.

Ichimura, K., Taguchi, M., & Norikoshi, R. (2006). Extension of the vase life in cut roses by treatment with glucose, isothiazolinonic germicide, citric acid and aluminum sulphate solution. Japan Agricultural Research Quarterly: JARO40(3), 263-269.

In, B. C., Chang, M. K., Byoun, H. J., & Son, K. C. (2010). Effect of vase water temperature and leaf number on water relations and senescence of cut roses. Korean Journal of Horticultural Science and Technology28(4), 609-617.

Iqbal, N., Khan, N. A., Ferrante, A., Trivellini, A., Francini, A., & Khan, M. I. R. (2017). Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Frontiers in Plant Science8, 475.

Jiang, Y., Khan, M. A., Wang, Z., Liu, J., Xue, J., Gao, J., & Zhang, C. (2015). Cu/ZnSOD involved in tolerance to dehydration in cut rose (Rosa hybrida). Postharvest Biology and Technology100, 187-195.

Jowkar, M. M., Khalighi, A., Kafi, M., & Hassanzadeh, N. (2013). Nano silver application impact as vase solution biocide on postharvest microbial and physiological properties of ‘Cherry Brandy’rose. Journal of Food Agriculture and Environment11, 1045-1050.

Lichtenthaler, H.K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1): F4-3.

Lurie, S., & Pedreschi, R. (2014). Fundamental aspects of postharvest heat treatments. Horticulture Research1, 14030.

Marszałek, K., Woźniak, Ł., Kruszewski, B., & Skąpska, S. (2017). The effect of high pressure techniques on the stability of anthocyanins in fruit and vegetables. International Journal of Molecular Sciences18(2), 277.

Norikoshi, R., Shibata, T., Niki, T., & Ichimura, K. (2016). Sucrose treatment enlarges petal cell size and increases vacuolar sugar concentrations in cut rose flowers. Postharvest Biology and Technology116, 59-65.

Oren-Shamir, M. (2009). Does anthocyanin degradation play a significant role in determining pigment concentration in plants?. Plant Science177(4), 310-316.

Palonen, H., Saloheimo, M., Viikari, L., & Kruus, K. (2003). Purification, characterization and sequence analysis of a laccase from the ascomycete Mauginiella sp. Enzyme and Microbial Technology33(6), 854-862.

Reid, M. S., & Jiang, C. Z. (2012). Postharvest biology and technology of cut flowers and potted plants. Horticultural Reviews40, 1-54.

Scariot, V., Paradiso, R., Rogers, H., & De Pascale, S. (2014). Ethylene control in cut flowers: classical and innovative approaches. Postharvest Biology and Technology97, 83-92.

Schenk, S. T., & Schikora, A. (2015). Lignin extraction and quantification, a tool to monitor defense reaction at the plant cell wall level. Bio-protocol, 5(6), 1-3.

Schmitzer, V., Veberic, R., Osterc, G., & Stampar, F. (2010). Color and phenolic content changes during flower development in groundcover rose. Journal of the American Society for Horticultural Science135(3), 195-202.

Sharifzadeh, K., Asil, M. H., Roein, Z., & Sharifzadeh, M. (2014). Effect of 8-hydroxyquinoline citrate, sucrose and peroxidase inhibitors on vase life of Lisianthus (Eustoma grandiflorum L.) cut flowers. Journal of Horticultural Research22(1), 41-47.

Urban, L., Six, S., Barthélémy, L., & Bearez, P. (2002). Effect of elevated CO2 on leaf water relations, water balance and senescence of cut roses. Journal of Plant Physiology159(7), 717-723.

Vaknin, H., Bar-Akiva, A., Ovadia, R., Nissim-Levi, A., Forer, I., Weiss, D., & Oren-Shamir, M. (2005). Active anthocyanin degradation in Brunfelsia calycina (yesterday–today–tomorrow) flowers. Planta222(1), 19-26.

Van Doorn, W. G., & Vaslier, N. (2002). Wounding-induced xylem occlusion in stems of cut chrysanthemum flowers: roles of peroxidase and cathechol oxidase. Postharvest Biology and Technology26(3), 275-284.

Van Meeteren, U., & Van Gelder, H. (1999). Effect of time since harvest and handling conditions on rehydration ability of cut chrysanthemum flowers. Postharvest Biology and Technology16(2), 169-177.

Vanholme, R., Demedts, B., Morreel, K., Ralph, J., & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology153(3), 895-905.

Wang, R., Zheng, X., & Xu, X. (2014).  Evidence for physiological vascular occlusion in stems of cut gerbera cv. Hongyan. Journal of Agricultural Science and Technology16(2), 365-372.

Woolf, A. B., Combes, S., Petley, M., Olsson, S. R., Wohlers, M., & Jackman, R. C. (2012). Hot water treatments reduce leaf yellowing and extend vase life of Asiatic hybrid lilies. Postharvest Biology and Technology64(1), 9-18.

Yamada, K., Norikoshi, R., Suzuki, K., Imanishi, H., & Ichimura, K. (2009). Determination of subcellular concentrations of soluble carbohydrates in rose petals during opening by nonaqueous fractionation method combined with infiltration–centrifugation method. Planta230(6), 1115-1127.