Document Type: Original Article

Authors

1 Department of Horticulture, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Department of Horticultural Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran

Abstract

Purpose: Our objective was to undertake the green synthesis of silver nanoparticles using Grapefruit (Citrus paradise) peel extract and evaluate the effects of silver nanoparticles on Botrytis cinerea. Research method: The silver nanoparticles formation was evaluated at different temperatures and concentrations of AgNO3. The experiment was conducted during 2015 at Science and Research Branch, Islamic Azad University, Tehran, Iran. Main findings: Silver nanoparticles were successfully synthesized by Grapefruit's peel through a simple green and eco-friendly route. Aqueous extract of Grapefruit's peel was used synthesize nanosilver. The size of nanoparticle was determined at 5-65 nm, with SPR absorption at 420 nm in UV-Vis spectroscopy. Transmission electron microscopy (TEM) and X-ray diffraction spectroscopy (XRD) revealed that the synthesized nanoparticle was face centered. The silver nanoparticles characterized for their size and shape using scanning electron microscopy and TEM, respectively. XRD was used to determine the concentration of metal ions. Result indicated that nanosilver reduced the growth of Botrytis cinerea inviro culture. The highest antifungal effect was seen in the treatment with 40g/l nanosilver. In the other hand, the effect of nanosilver and time on diameter growth of Botrytis cinerea was not significant, individually (p≤1%). Limitations: No limitations were founded. Originality/Value: Green Synthesis of Nano is a reliable method for the nanoparticles synthesis and environmentally friendly approach.

Keywords

Main Subjects

Ahmad, A., Mukherjee, P.,  Senapati, S.,  Mandal, D.,  Khan, M., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces, 28, 313-318. https://doi.org/10.1016/s0927-7765(02)00174-1

Ankanna, S., Prasad, T. N. V. K. V., Elumalai, E. K., & Savithramma, N. (2010). Production of biogenic silver nanoparticles using Boswellia Ov Alifoliolata stem bark. Journal of Nanomaterial and Bioscience, 5, 369-372.

Aguilar-Mendez, M. A., Martin-Martinez, E. S., Ortega-Arroyo, L., Cobian-Portillo, G., & Sanchez-Espindola, E. (2011). Synthesis and characterization of silver nanoparticles: Effect on phytopathogen Colletotrichum gloesporioides. Journal of Nanoparticle Research, 13, 2525-2532. https://doi.org/10.1007/s11051-010-0145-6

Biswas, P., & Wu, C. Y. (2005). Nanoparticles and the environment. Journal of Air Waste Manage Association, 55, 708-746.

Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad., A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology progress, 22, 577-583. https://doi.org/10.1021/bp0501423

Chitrani, B. D., Ghazani, A. A., Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nanotechnolgy Letters, 6, 662-668. https://doi.org/10.1021/nl052396o

De Cremer, K., Mathys, J., Vos, C., Froenicke, L., Michelmore, R. W., & Cammue, B. (2013). RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant, Cell and Environment, 36(11), 1992-2007. https://doi.org/10.1111/pce.12106

Dhillon, G. S., Brar, S. K., Kaur, S., & Verma, M. (2012). Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Critical Review of Biotechnology, 32, 49-73. https://doi.org/10.3109/07388551.2010.550568

Farooqui, M. A., Chauhan, P. S., Krishnamoorthy, P., & Shai, J. (2010). Extraction of silver nano-particles from the leaf extracts of Clerodendrum inerme. Digest Journal of Nanomaterials and Biostructures, 5, 43-49.

Feldheim, D. L., & Foss, C. A. (2002). Metal nanoparticles: synthesis, characterization and applications. Boca Raton, FL, CRC Press.

Galeano, B., Korff, E., & Nicholson, W.L. (2003). Inactivation of vegetative cells, but not spores, of Bacillus anthracisB. cereus and B. subtilis on stainless steel surfaces coated with an antimicrobial Silver-and Zinc-containing zeolite formulation. Applied Environmental Microbiology, 69, 4329-4331. https://doi.org/10.1128/aem.69.7.4329-4331.2003

Gericke, M., & Pinches, A. (2006). Biological synthesis of metal nanoparticles. Hydrometallurgy, 83,132-140. https://doi.org/10.1016/j.hydromet.2006.03.019

Ghosh, S.,  Patil, S., Ahire, M., Kitture, R.,  Kale, S., Pardesi, K., Camerta, S., Bellare, J., Dhavale, D. D., Jabgunde, A & Chopade, B. A. (2012).Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine, 7, 483-496.

Gurunathan, S., Kalishwaralal, K., Vaidyanathan R., Deepak, V., Pandian, S. R. K & Muniyandi, J. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloid Surface, 74, 328-335. https://doi.org/10.1016/j.colsurfb.2009.07.048

Jarvis, W. R. (1977). Botryotinia and botrytis species - Taxonomy, physiology and pathogenicity. A guide to the literature, Monograph no. 14, Ottawa, Research Branch, Canada Department of Agriculture.

Jiang, J., Oberdorster, G., & Biswas, P. (2009). Characterization of size, surface charge and agglomeration state of nanoparticle dispersions for toxicological studies. Nanoparticle Research,11: 77-89. https://doi.org/10.1007/s11051-008-9446-4

Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B.I., & Gu, B.M. (2008). Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small, 4, 746-750. https://doi.org/10.1002/smll.200700954

Kaler, A., Nankar, R., Bhattacharyya, M. S., & Banerjee, U.C. (2011). Extracellular biosynthesis of silver nanoparticles using aqueous extract of Candida viswanathii. Journal of Bionanoscience, 5, 53-8. https://doi.org/10.1166/jbns.2011.1040

Kasthuri, J., Veerapandian, S., & Rajendiran, N. (2009). Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces, 68, 55-60. https://doi.org/10.1016/j.colsurfb.2008.09.021

Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C. (2001). Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science. Trends Biotechnology, 19, 15-20. https://doi.org/10.1016/s0167-7799(00)01514-6

Kouvaris, P., Delimitis, A., Zaspalis, V., Papadopoulos, D., Tsipas, S. A., & Michailidis, N. (2012).  Green synthesis and characterization of silver nanoparticles produced using Arbutus undo leaf extract. Material Letter, 76, 18-20. https://doi.org/10.1016/j.matlet.2012.02.025

Krishnaraj, C., Jagan, E., Rajasekar, S., Selvakumar, P., Kalaichelvan, P., & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces, 76, 50-56. https://doi.org/10.1016/j.colsurfb.2009.10.008

Maribel, G. G., Jean, D., & Stephan, G. (2009). Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. International Journal of Chemical and Biological Engineering, 2(3), 104-111.

Mohanpuria, P., Rana, N. K., & Yadav, S.K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10, 507-517. https://doi.org/10.1007/s11051-007-9275-x

Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K.,  Ghatak, J.,  Tyagi, A. K., & Kale, S. P. (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 43-54 https://doi.org/10.1088/0957-4484/19/7/075103

Qiu, L., Yang, H. H., Lei, F., Fan, S. G.,  Xie, M. H., & Wang, Z. J. (2014). "Studies on the Bacteriostasis of nano-silver on the pathogenic fungus Botrytis cinerea from Illed plants". Applied Mechanics and Materials, 65, 352-361. https://doi.org/10.4028/www.scientific.net/amm.651-653.352

Sahar, M., & Ouda , S. (2014). Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinereaResearch Journal of Microbiology, 9,34-42. https://doi.org/10.3923/jm.2014.34.42

Schaffer, B., Hohenester, U., Trugler, A., & Hofer, F. (2009). High resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy. Physics Reveiw B, 79, 34-52 https://doi.org/10.1103/physrevb.79.041401

Sepeur, S. 2008. Nanotechnology: Technical Basics and Applications. Hannover: Vincentz. 230 p.

Shahverdi, A. R., Shakibaie, M., Nazari, P. (2011). Basic and practical procedures for microbial synthesis of nanoparticles. In : Rai, M., & Duran, N. editors. Metal Nanoparticles in Microbiology. Berlin: Springer, 177-97. https://doi.org/10.1007/978-3-642-18312-6_8

Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., & Yu, C. (2010). Lattice strain control of the activity in dealloyed core-shell fuelcell catalysts. National Chemistry, 2, 454-460. https://doi.org/10.1038/nchem.623

Sun, S., Murray, C., Weller, D., Folks, L., & Moser, A. (2000). Monodisperse FePt nanopaarticles and ferromagnetic FePt nanocrystal superlattices. Science, 287, 1989-1992. https://doi.org/10.1002/chin.200027244

Tada, H., Teranishi, K., Inubushi, Y., & Ito, S. (2000). Ag nanocluster loading effect on TiO2 photocatalytic reduction of bis (2-dipyridyl)disulfide to 2-mercaptopyridine by H2O. Langmuir, 16 (7), 3304-3309. https://doi.org/10.1021/la991315z

Van Kan, J.A. (2006). Licensed to kill the lifestyle of a necrotrophic plant pathogen. Trends in Plant Science, 11(5), 247-253. https://doi.org/10.1016/j.tplants.2006.03.005

Yogeswari, R., Sikha, B., Akshya Kumar, O., & Nayak, P. L. (2012). Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. Journal of Microbiology and Antimicrobials, 4(6), 103-109. https://doi.org/10.5897/jma11.060

Zhang, L., & van Kan, J. A. L. (2013). Pectin as a barrier and nutrient source for fungal plant pathogens. In F. Kempken (Ed.), A comprehensive treatise on fungi as experimental systems for basic and applied research, 361-365. (The Mycota; No. 11). Heidelberg, Germany. https://doi.org/10.1007/978-3-642-36821-9_14