Document Type: Review Article

Authors

Department of Dry Land Crop and Horticultural Science, College of Agriculture, Mekelle University, Mekelle, Ethiopia

10.22077/jhpr.2020.2885.1102

Abstract

Purpose: Ultraviolet-B radiation was inducing enormous stress at highland and coldest area since it increases more than 40% at highland when we compare with lowland. Therefore, this review aims to assess and depict impacts of Ultraviolet-B radiation on photosynthetic efficiency, growth performance, and yield of crops based on altitude. Findings: Indicate that ultraviolet-b radiation has a severe effect on photosynthesis, especially the coldest time. It reduces photosynthetic efficiency in such an area, but it depends on the type of the crop and cultivar difference. On the other hand, it reduces growth performance and biomass accumulation based on altitude. There is a contrasting view on a net-assimilation rate on different studies condition. The effect of UV-B on crop yield was more contrasting in some studies says no effect on other studies it says it affect, but this contradictory result was mainly due to the difference in study conditions, still current studies on Yield revealed that UV-B has a high impact on yield. Research limitations: Ultraviolet-B radiation has high effect on the highland area, but there is no much research focuses, but UV-B was profoundly affecting photosynthetic efficiency, growth performance and yield of crops on highland area. Directions for future research: UV-B was reducing crop production, and productivity at highland and this review gives more insights on UV-B impact at the highland and allow UV-B adaptive and preventive investigation in the future.

Keywords

Main Subjects

Agrawal, S. B. (1992). Effects of supplemental UV-B radiation on photosynthetic pigment, protein, and glutathione contents in green algae. Journal of Environmental and Experimental Botany, 32(2), 137-143. https://doi.org /10.1016/0098-8472(92)90038-4

Allen, D. J., Nogue´ S. S., & Baker, N. R. (1998). Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis?, Journal of Experimental Botany, 49(328), 1775-1788, https://doi.org/10.1093/jxb/49.328.1775

Avery, L., M., Thompson, P. C., Paul, N. D., Grime, J. P., & West, H. M. (2004). Physical disturbance of upland grassland influences the impact of elevated UV-B radiation on metabolic profiles of below-ground micro-organisms. Journal of Global Change Biology, 10(7), 1146-1154. https://doi.org/ 10.1111/j.1529-8817.2003.00788.x

Ballaré, C. L., Rousseaux, M. C.,  Searles, P. S.,  Zaller, J. G.,  Giordano, C. V., Robson, T. M.,  Caldwell,  M. M.,  Sala O. E.,  & Scopel A. L. (2001). Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra. Journal of Photochemistry and Photobiology, 62(1-2), 67-77. https://doi.org10.1016/s1011-1344(01)00152-x

Bassman, J. H. (2004). Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial communities. Journal of Photochemistry and Photobiology, 79(5), 382-398. https://doi.org/10.1562/si-03-24.1

Berg, H. (2008). Johann Wilhelm Ritter, The founder of scientific electrochemistry. Journal of Revolutionary Polarography, 54(1), 99-103. https://doi.org/10.5189/revpolarography.54.99

Bjorn, L. O. (1996). Effects of ozone depletion and increased UV‐B on terrestrial ecosystems. International Journal of Environmental Studies, 51(3), 217-243. https://doi.org/10.1080/00207239608711082

Briscoe, A. D., & Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46(1), 471-510. https://doi.org/10.1146/annurev.ento.46.1.471

Caldwell, M. M., Bjorn, L.O., Bornman, J. F., Flint, S. D., Kulandaivelu, G., Terramara, A. H., & Tevini M. (1980). Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Journal of Photochemistry and Photobiology, 6(3), 252-266. https://doi.org/10.1039/b700019g

Cechin, I., deFátima, T. F., & Ligia, A. D. (2007). Growth and physiological responses of sunflower plants exposed to ultraviolet-B radiation. Ciência Rural Santa Maria, 37(1), 85-90.

Chalker-Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Journal of Photochemistry and Photobiology, 70(1), 1-9. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x

Chen, J. J., Zu, Y.Q., Chen, H.Y., & Li, Y. (2004). Influence of enhanced UV-B radiation on growth and biomass allocation of twenty soybean cultivars. Journal of Agro-Environmental Science. 23(1), 29-33.

Coleman, R. S., & Day, T. A. (2004). The response of cotton and sorghum to several levels of sub- ambient solar UV-B radiation: a test of the saturation hypothesis. Physiologia Plantarum, 122(3), 362-372. https://doi.org/10.1111/j.1399-3054.2004.00411.x

Correia, C., Torres, M., & Pereira, M. (1999). Growth, photosynthesis, and UV-B Absorbing compounds of Portuguese barbela wheat exposed to UV-B radiation. Journal of Environment and Pollution, 104(1), 383-388.

Dai, Q., Coronel, V. P., Vergara, B. S., & Barnes P. W. (1997). Ultraviolet-B radiation effects on growth and physiology of four rice cultivars. Journal of Crop Science, 32(1), 1269-1274. https://doi.org/10.2135/cropsci1992.0011183X003200050041x

Egli, D. B., Ramseur, E. L., Yu, Z.W., & Sullivan, C.H. (1989). Source-sink alterations affect the number of cells in soybean cotyledons. Journal of Crop Science, 29(3), 732-735. https://doi.org/10.2135/cropsci1989.0011183X002900030039x

Feng, H. Y., An, L. Z., Xu, S. J., Qiang, W. Y., Chen, T., & Wang, X. L. (2001). Effect of enhanced ultraviolet-B radiation on growth, development, pigments and yield of soybean (Glycine max (L.) Merr.). Acta Agronomica Sinica, 27(1), 319-323.

Fuhrer, J., & Booker, F. (2003). Ecological issues related to ozone: agricultural issues. Journal of Environment International, 29(1), 141-154. https://doi.org/10.1016/S0160-4120(02)00157-5

Gao, W. Z., Slusser, Y., Heisler, R., & Gordon, M. (2003). Impact of enhanced ultraviolet-B irradiance on cotton growth, development, yield, and qualities under field conditions.  Agricultural and Forest Meteorology, 120(1), 241-248. https://doi.org/10.1016/j.agrformet.2003.08.019

Godin, S., Bergeret, V., Bekki, S., David, C., & M´egie, G. (2001). Study of the inter-annual ozone loss and the permeability of the Antarctic polar vortex from aerosol and ozone lidar measurements in Dumont d´ Urville (66.4 S, 140 E). Journal of Geophysical Research, 106(1), 1311-1330. https://doi.org/10.1029/2000JD900459

Gould, K. S. (2004). Nature's Swiss army knife: The diverse protective roles of anthocyanins in leaves. Journal of Biomedicine and Biotechnology, 5(1), 314-320. https://doi.org/10.1155/S1110724304406147

Hakala, K., Jauhiainen, L., Koskela, T., Kayhko, P., & Vorne, V. (2002). Sensitivity of crops to increased ultraviolet radiation in northern growing conditions. Journal of Agroforestry and Crop Science, 188, 8-18. https://doi.org/10.1046/j.1439-037x.2002.00536.x

He, J., Huang, L. K.., Chow, W. S., Whitecross, M. I., & Anderson, J. M. (1994). Responses of rice and pea plants to hardening with low doses of ultraviolet-B radiation. Australian Journal of Plant Physiology, 21, 563-574. https://doi.org/10.1071/PP9940563

Helsper, J. P., devos, C. H., Maas F. M., Jonker, H. H., VandenBroeck, H. C., & Schapendonk, A. H. (2003). The response of selected antioxidants and pigments in tissues of Rosa hybrid and Fuchsia hybrid to supplemental UV-B exposure. Physiologia Plantarum, 117, 171-178. https://doi.org/10.1034/j.1399-3054.2003.00037

Hollosy, F. (2002). Effects of ultraviolet radiation on plant cells. Journal of International Research and Review on Microscopy, 33(2), 179-197. https://doi.org/10.1016/S0968-4328(01)00011-7

Irani, N. G., & Grotewold, E. (2005). Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells. Journal of BMC Plant Biology, 5(7). https://doi.org/10.1186/1471-2229-5-7

Jansen, M. (2002). UV-B radiation effects on plants: Inductions of morphogenic responses. Physiologia Plantarum,116(10), 423-429. https://doi.org/10.1034/j1399-3054.2002.1160319.x

Jansen, M. K., & Bornman, J. F. (2012). UV-B radiation: from generic stressor to the specific regulator. Journal of Plant Physiology, 145, 501-504. https://doi.org/ 10.1111/j.1399-3054.2012.01656.x

Jenkins, G. I. (2014). The UV-B Photoreceptor UVR8: from structure to physiology. The Plant Cell, 26(1), 21-37. https://doi.org/10.1105/tpc.113.119446

Kakani, V. G., Reddy, K. R., Zhao, D., & Sailaja, K. (2003). Field crop responses to ultraviolet-B radiation: A review. Journal of Agricultural and Forest Meteorology, 120, 191-218.

Kataria, S., Gurupreased, K. N., Ahuja, S., & Singh, B. (2013). Enhancements of growth, photosynthetic performance, and yield by the exclusion of ambient UV-B components in C-3 and C-4 plants. Journal of Photochemistry and Photobiology, 127(5), 140-152.

Kerr, J. B., & McElroy, C. T. (1993). Evidence for the large upward trends of ultraviolet-B radiation linked to ozone depletion. Science, 262(5163), 1032-1034.

Lidon, F. J., Reboredo, F. H., Silva, M. M. A., Duarte, M. P., & Ramalho, J. C. (2012). Impact of UV-B radiation on photosynthesis an overview. Emirates Journal of Food and Agriculture, 546-556.

Liu, B., Wang, C., Jin, J., Liu, J. D., Zhang, Q. Y., & Liu, X. B. (2009). Responses of soybean and other plants to enhanced UV-B radiation. Journal of Soybean Science, 28(1), 1097-1102. https://doi.org/10.11861/j.issn.1000-9841.2009.06.1097

Liu, B., Xiao, B. L., Yan, S. L., & Herbert, S. J. (2013). Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. Field Crops Research, 154, 158-163. http://dx.doi.org/10.1016/j.fcr.2013.08.006

Margitan, J. J. (1991). HO2 in the Stratosphere: 3 In-situ Observations, Geophysical Research Letters, 8(3).

Mazza, C. A., Battissta, D., Zima, A. M., Scwcrberg, M., Giordano, C., Aceveo, A., & Ballare C. L. (1999). The effects of Solar Ultraviolet B Radiation on growth and yield of Barely are accompanied by increased DNA damage and antioxidant response. Journal of Plant Cell Environment, 22, 61-70. https://doi.org/10.1046/j.1365-3040.1999.00381.x

McKenzie, R. L., Bjö rn, L. O., Bais, A., & Ilyasd, M. (2003). Changes in biologically active ultraviolet radiation reaching the Earth’s surface.Photochemical & Photobiological Sciences, 2(1), 5-15. https://doi.org 10.1039/b211155c

Morrisette, P. M. (1989). The evolution of policy responses to stratospheric ozone depletion, 29 Natural Resources Journal, 793. http://digitalrepository.unm.edu/nrj/vol29/iss3/9

Nogues, S., Allen J., Morison, J.L., & Baker, N.R. (1998). Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in drought Pea plants. Journal of Plant Physiology, 117, 173-181. https://doi.org/10.1104/pp.117.1.173.

Oren-Shamir, M., & Levi-Nissim, A. (1997). UV-light effect on the leaf pigmentation of Cotinus coggygria ‘Royal Purple’. Scientia Horticulturae, 71(1-2), 59-66. https://doi.org/10.1016/S0304-4238(97)00073-3

Pfeifer, M. T., Koepke, P., & Reuder, J. (2006). Effects of altitude and aerosol on UV radiation. Journal of Geophysical Research. 111, 1-11. https://doi.org/203.doi:10.1029/2005JD006444

Phoenix, G. K.., Gwynn-Jones, J. A., & Callaghan T. V. (2002). Ecological importance of ambient solar ultraviolet radiation to a sub-arctic health community. Journal of Plant Ecology, 165(2), 263-273. https://doi.org/10.1023/A:1022276831900

Reddy, K. R., Kakani, V. G., Zhao, D., Mohammed, A. R., & Gao, W. (2003). Cotton responses to ultraviolet-B radiation: Experimentation and algorithm development. Journal of Agricultural and Forest Meteorology, 120(1-4), 249-265.

Robson, M. T., Klem, K., Urban, O., & Jansen, M. A. (2014). Reinterpreting plant morphological responses to UV-B radiation. Plant, Cell & Environment, 38(5), 856-866. https://doi.org/10.1111/pce.12374

Robson, T. M., Pancotto, V. A., Flint, S. D., Ballaré, C. L., Sala, O. E., Scopel, A. L., & Caldwell, M. M. (2003). Six years of solar UV-B manipulations affect the growth of Sphagnum and vascular plants in a Tierra del Fuego peatland. Journal of New Phytology, 160, 379-389, https://doi.org/10.1046/j.1469-8137.2003.00898.x

Rowland, F. S. (2006). Stratospheric ozone depletion. The Royal Society Publishing, 361(29), 769-790. https://doi.org/10.1098/rstb.2005.1783

Rozema, J., Boelen, P., & Blokker, P.  (2005). Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Journal of Environmental Pollution, 137(3), 428–442.

Rozema, J., Van de Staaij, J., Björn, L. O., & Caldwell, M. (1997). UV-B as an environmental factor in plant life: stress and regulation. Journal of Trends in Ecological Evolution, 12(1), 22-28. https://doi.org/10.1016/s0169-5347(96)10062-8

Sarkar, D., Bhowmik, P. C., Kwon, Y. I., & Shetty, K. (2011). the role of proline- associated pentose phosphate pathway in cool-season turfgrasses after UV-B exposure. Journal of Environmental and Experimental Botany, 70(2-3), 251-258. https://doi.org/10.1016/j.envexpbot.2010.09.018

Schrope, M. (2000). Successes in a fight to save the ozone layer could close holes by 2050. Nature, 627, 408. https://doi.org/10.1038/35047229

Sharma. R. (2001). Impact of solar UV-B on tropical ecosystems and agriculture. Case study: effect of UV-B on rice. Proceeding of SEAWPIT98 & SEAWPIT2000, 1, 92-101.

Stapleton, A. E. (1992). Ultraviolet radiation and plants: burning questions. The Plant Cell, 4(11), 1353-1358. https://doi.org/10.1105/tpc.4.11.1353

Taalas, P., Kaurola, J., & Kylling, A.  (2000). the impact of greenhouse gases and halogenated species on the future solar UV radiation doses. Journal of Geophysical Research Letters, 27, 1127-1130. https://doi.org/10.1029/1999GL010886

Tanyolac, D., Ekmekci, Y., & Unalan, S. (2007). Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Journal of Chemosphere, 67(1), 89-98. https://doi.org/ 10.1016/j.chemosphere.2006.09.052

Tevini, M., & Teramura, A. H. (1993). UV-B effect on terrestrial plants. Journal of Photochemistry and Photobiology, 50(4), 479-487. https://doi.org/10.1111/j.1751-1097.1989.tb05552.x

Wuebbles, D. J., Wei, C.F., & Patten, K.O. (1998). UV-B Effects on stratospheric ozone and temperature during the maximum and minimum. Geophysical Research Letters, 25, 523-526. https://doi.org/10.1029/98GL00057

Xiong, F. S., & Day T. A. (2001). Effects of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiology, 125, 738-751. https://doi.org/10.1104/pp.125.2.738

Yao, Y., Yang, Y., Ren, J., & Li, C. (2006). UV-spectra dependence of seedling injury and photosynthetic pigment change in Cucumis sativus and Glycine max. Environmental and Experimental Botany, (57)1, 160-167. https://doi.org/10.1016/j.envexpbot.2005.05.009

Zhao, G. O., Reddy K. R., Kakani, V. G., Read, J. J., & Sullivan, J. H. (2004). Growth and physiological responses of cotton (Gossypium hirsutum) to elevated carbon dioxide and ultraviolet-B radiation under controlled environment conditions. Plant, Cell & Environment, 26(1), 771-782. https://doi.org/10.1046/j.1365-3040.2003.01019

Zuk-Golaszewska, K.., Upadhyaya, M., & Golaszewski, J. (2004). The effect of UV-B radiation on plant growth and development. Plant Soil and Environment, 49(3), 135-140. https://doi.org/10.17221/4103-PSE