Document Type: Original Article

Authors

1 Department of Plant Protection, College of Agriculture, University of Birjand, Birjand, Iran.

2 Department of Horticultural Science, College of Agriculture, University of Birjand, Birjand, Iran.

Abstract

Purpose: The present research was done to evaluate the responses of ‘Yusef Khani’ (Y) and ‘Malas-e-Yazdi’ (M) Iranian pomegranates to salt stress under field conditions. Research method: Treatments included different salinized water (EC=1.05 as control, 4.61 and 7.46 dS m–1) and two commercially Iranian pomegranate varieties. Main findings: Interaction of salinity × variety showed the lowest chlorophyll (chl) and potassium (K) level, and the highest chloride (Cl) and sodium (Na) in M variety, under high level of salinity. Although the lowest non-photochemical quenching, and effective quantum yield of photochemical energy conversion in PSII observed in this variety under 7.46 dS m–1, however, basal quantum yield of non-photochemical processes in PSII increased. Accumulation of Na and Cl in leaf tissue increased with increasing salinity in both varieties. Moreover, lower accumulation of calcium (Ca), magnesium (Mg) and iron (Fe) observed in both varieties. More Na and Cl was obtained within leaves of M variety, compared with other one. We found that there were some differences between these varieties and ‘Yousef Khani’ was more tolerant to salinity compared with ‘Malas-e-Yazdi’. Limitations: It might be better to evaluate several varieties for salinity resistance, however, it was impossible to us. Originality/Value: Iran is the main source of genetic variability for pomegranate. There is a huge diversity within pomegranate germplasm that should be studied for salinity and drought resistance. Thus, here we conducted a research to find a salt resistant pomegranate. 

Keywords

Main Subjects

Acosta-Motos, J. R., Diaz-Vivancos, P., Álvarez, S., Fernández-García, N., Sánchez-Blanco, M. J., & Hernández, J. A. (2015a). NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. Journal of Plant Physiology183, 41-51. https://doi.org/10.1016/j.jplph.2015.05.005 

Acosta-Motos, J. R., Diaz-Vivancos, P., Álvarez, S., Fernández-García, N., Sanchez-Blanco, M. J., & Hernández, J. A. (2015b). Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta242(4), 829-846.  https://doi.org/10.1007/s00425-015-2315-3 

Apse, M. P., & Blumwald, E. (2007). Na+ transport in plants. FEBS Letters, 581(12), 2247-2254. https://doi.org/10.1016/j.febslet.2007.04.014

Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicator of salinity tolerance in plants. Plant Science, 166, 3-16. https://doi.org/10.1016/j.plantsci.2003.10.024

Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006

Asrey, R., & Shukla, H. S. (2003). Salt stress and correlation studies in pomegranate (Punica granatum L.). Indian Journal of Horticulture, 60 (4), 330–334.

Bhantana, P., & Lazarovitch, N. (2010). Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.) varieties under salt stress. Agricultural Water Management, 97, 715–722. https://doi.org/10.1016/j.agwat.2009.12.016

Bilger, W., & Björkman, O. (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25, 173-185. https://doi.org/10.1007/bf00033159

Bilger, W., & Schreiber, U. (1986). Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynthesis Research, 10, 303-308. https://doi.org/10.1007/bf00118295

Bilger, W., Schreiber, U., & Lange, O. L. (1987). Chlorophyll fluorescence as an indicator of heat induced limitation of photosynthesis in Arbutus unedo L.. Plant Response to Stress, 2, 391-399.  https://doi.org/10.1007/978-3-642-70868-8_24

Black, C. A. (1965). Methods of Soil Analysis. Part I: Physical and Mineralogical Properties. American Society of Agronomy, Madison, Wisconsin, USA. https://doi.org/10.2134/agronmonogr9.1.frontmatter

Chapman, H. D., & P. F. Pratt. (1982). Methods of Analysis for Soils, Plants and Water. Chapman Publisher, Riverside, CA, USA.

Chartzoulakis, K., Loupassaki, M., & Androulakis, I. (2002). Comparative study on NaCl salinity of six olive cultivars. Acta Horticulturae, 586(1), 497-502. https://doi.org/10.17660/actahortic.2002.586.103

Doring, J., & Ludders, P. (1986). Effect of different salt treatment on Punica granatum at different root temperatures. Gartenbauwissenschaft, 52(2), 92-96.

Doring, J., & Ludders, P. (1987). Influence of sodium salts on Na, Cl and SO4 content in leaves, shoots and roots of Punica granatum. Gartenbauwissenschaft, 52 (1), 26–31.

Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Et Biophysica Acta, 990, 87–92. https://doi.org/10.1016/s0304-4165(89)80016-9 

Hanafy, A. H., Gad–Mervat, M. A., Hassam, H. M., & Amin–Mona, A. (2002). Improving growth and chemical composition of Myrtus communis grown under soil salinity conditions by polyamine foliar application. ProcMinia–Egyptian Journal of Agricultural Research and Development, 22, 1697-1720.

Holland, D., Hatib, K., & Bar–Yáakov, I. (2009). Pomegranate: botany, horticulture, breeding. In: Janick, J., (ed) In: Horticultural Reviews, 35, 127-191. https://doi.org/10.1002/9780470593776.ch2

Jain, B. L., & Dass, H. C. (1988). Effect of saline water on pomegranate of sapling of jujube (Zizyphus mauritiana), Indian cherry (Cordia dichotoma var. Wallichi) and pomegranate (Punica granatum) at nursery stage. Indian Journal of Agricultural Science, 58, 420-421.

Juneau, P., Green, B. R., & Harrison, P. J. (2005). Simulation of pulse- amplitude-modulated (PAM) fluorescence: limitations of some PAM-parameters in studying environmental stress effects. Photosynthetica, 43, 75-83. https://doi.org/10.1007/s11099-005-5083-7

Kalaji, H., Govindjee, M., Bosa, K., Kościelniak, J., & Żuk-Golaszewska, K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73, 64-72. https://doi.org/10.1016/j.envexpbot.2010.10.009

Kaya, C., Kirnak, H., Higgs, D., & Saltali, K. (2002). Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae, 93, 65-74. https://doi.org/10.1016/s0304-4238(01)00313-2 

Khaleghi, E., Arzani, K., Moallemi, N., & Barzegar, M. (2012). Evaluation of chlorophyll content and chlorophyll fluorescence parameters and relationships between chlorophyll a, b and chlorophyll content index under water stress in Olea europaea cv. Dezful. World Academic Science and Engineering Technology, 68, 1154-1157.

Khayyat, M., Rajaee, S., Sajjadinia, A., Eshghi, S., & Tafazoli E. (2009). Calcium effects on changes in chlorophyll contents, dry weight and micronutrients of strawberry (Fragaria ananassa Duch.) plants under salt–stress conditions. Fruits, 64, 53–59. https://doi.org/10.1051/fruits/2008050

Khoshgoftarmanesh, A. H., & Siadat, H. (2002). Mineral Nutrition of Vegetables and Horticultural Crops in Saline Conditions. Tehran, Iran: Agricultural Ministry, Deputy of Horticulture.

Krause, G. H., & Weis, E. (1984). Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynthesis Research, 5, 139-157. https://doi.org/10.1007/bf00028527 

Lazár, D. (1999). Chlorophyll a fluorescence induction. Biochimica Et Biophysica Acta-Bioenergetics, 1412, 1-28.

Levin, G. M. (2006). Pomegranate Roads: a Soviet Botanist’s Eexile from Eden. Baer BL, (ed), Canada: Floreat, Forestville,

Loupassaki, M. H. M., Chartzoulakis, K. S., Digalaki, N. B., & Androulakis, I. (2002). Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. Journal of Plant Nutrition, 25(11), 2457-2482. https://doi.org/10.1081/pln-120014707 

Marschner, H. (1995). Mineral Nutrition of Higher Plants. 2nd ed. London: Academic Press. https://doi.org/10.1016/b978-0-12-473542-2.x5000-7 

Martinez–Rodriguez, M. M., Estañ, M. T., Moyano, E., Garcia–Abellan, J. O., Flores, F. B., Campos, J. F., Al–Azzawi, M. J., Flowers, T. J., & Bolarín M.C. (2008). The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environmental and Experimental Botany, 63, 392-401.  https://doi.org/10.1016/j.envexpbot.2007.12.007

Mastrogiannidou, E., Chatzissavvidis, C., Antonopoulou, C., Tsabardoukas, V., Giannakoula, A., & Therios, I. (2016). Response of pomegranate cv. wonderful plants tο salinity. Journal of Soil Science and Plant Nutrition, 16 (3), 621-636. https://doi.org/10.4067/s0718-95162016005000032

Medrano, H., Bota, J., Abadía, A., Sampol, B., Escalona, J. M., & Flexas, J. (2002). Drought effects on light energy dissipation in high light-acclimated, field-grown grapevines. Functional Plant Biology, 29, 1197-1207.

Molinari, H. B. C., Marur, C. J., Daros, E., Campos, M. K. F., Carvalho, J. F. R. P., & Filho, J. C. B. (2007). Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum, 29, 130-218. https://doi.org/10.1111/j.1399-3054.2007.00909.x 

Moya, J. L., GoÂmez-Cadenas, A., Primo-Millo, E., & Talon, M. (2003). Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. Journal of Experimental Botany, 54(383), 825-833. https://doi.org/10.1093/jxb/erg064

Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025-1043. https://doi.org/10.1093/jxb/erj100

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.

Naeini, M. R., Khoshgoftarmanesh, A. H., & Fallahi, E. (2006). Partitioning of chloride, sodium, and potassium and shoot growth of three pomegranate cultivars under different levels of salinity. Journal of Plant Nutrition, 29, 1835–1843. https://doi.org/10.1080/01904160600899352 

Neocleous, D., & Vasilakakis, M. (2007). Effects of NaCl stress on red raspberry (Rubus idaeus L. ‘Autumn Bliss’). Scientia Horticulturae, 112, 282-289. https://doi.org/10.1016/j.scienta.2006.12.025

Okhovatian–Ardakani, A. R., Mehrabanian, M., Dehghani, F., & Akbarzadeh, A. (2010). Salt tolerance evaluation and relative comparison in cuttings of different pomegranate cultivars. Plant Soil and Environment, 56(4), 176-185. https://doi.org/10.17221/158/2009-pse 

Paranychianakis, N. V., & Angelakis, A. N. (2008). The effect of water stress and rootstock on the development of leaf injuries in grapevines irrigated with saline effluent. Agricultural Water Management, 95, 375-382. https://doi.org/10.1016/j.agwat.2007.10.019

Patil, V. K., & Waghmare, P. R. (1982). Salinity tolerance of pomegranate. Journal of Maharashtra Agricultural University, 7, 268-269.

Rahneshan, Z., Nasibi, F., & Ahmadi Moghadam, A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of Plant Interaction, 18 (1), 73-82. https://doi.org/10.1080/17429145.2018.1424355

Ranjbarfordoei, A., R. Samson, & Van Damme, P. (2006). Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. Photosynthetica, 44, 513-522.

Rhoades, J. D. (1982). Soluble salts. In: Methods of Soil Analysis, Oxford.

Roháček, K. (2002). Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40, 13-29.

Saini, R. S., Sharme, K. D., Dhankhar, O. P., & Kaushik, R. A. (2001). Laboratory Manual of Analytical Techniques in Horticulture. Indian, Agrobios.

Silva–Ortega, C. O., Ochoa–Alfaro, A. E., Reyes–Aguerro, J. A., Aguado–Santacruz, G. A., & Jiménez–Bremont, J. F. (2008). Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiology and Biochemistry, 46, 82-92. https://doi.org/10.1016/j.plaphy.2007.10.011

Storey, R., & Walker, R. R. (1999). Citrus and salinity. Scientia Horticulturae, 78, 39-81. https://doi.org/10.1016/s0304-4238(98)00190-3 

Tabatabaei, S. Z., & Sarkhosh, A. (2006). Analysis and comparison of salinity tolerance among 10 Iranian commercial pomegranate cultivars In First International Symposium of Pomegranate and Minor Mediterranean Fruits. 16-19 October, Adana, Turkey (pp. 16-19).

Tester, M., & Davenport, R. J. (2003). Na+ transport and Na+ tolerance in higher plants. Annals of Botany. 91, 503-527. https://doi.org/10.1093/aob/mcg058 

Tiwari, J. K., Munshi, A. D., Kumar, R., Pandey, R. N., Arora, A., Bhat, J. S., & Sureja A. K.. (2010). Effect of salt stress on cucumber: Na+/K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiologiae Plantarum, 32, 103-114. https://doi.org/10.1007/s11738-009-0385-1

White, P. J., & Davenport, R. J. (2002). The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis. Plant Physiology, 130, 1386-1395.  https://doi.org/10.1104/pp.005769 

Zaman, M., Shabir, Sh. A., & Heng, L. (2018). Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques.Springer International Publishing, 183 pp. https://doi.org/10.1007/978-3-319-96190-3

Zhang, H. B., & Xu, D. Q. (2003). Role of light–harvesting complex 2 dissociation in protecting the photosystem 2 reaction centres against photodamage in soybean leaves and thylakoids. Photosynthetica, 41, 383-391.  https://doi.org/10.1023/b:phot.0000015462.71601.d7