Document Type: Original Article

Authors

1 Pharmacy and Food Sciences Department, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7; 01006 Vitoria-Gasteiz; Spain

2 Fundación AZTI Fundazioa, Food Research Division, Astondo bidea, Edif 609, 48160, Derio Spain

3 Fundación AZTI Fundazioa, Marine Research Division, Txatxarramendi ugartea z/g, 48395, Txatxarramendi, Spain

Abstract

Purpose: Spoilage flora is critical in vegetal ready to eat (RTE) product shelf-life and selecting efficient spoilage control technologies depends on the microorganisms present. This manuscript describes the evolution of the bacteriome of Batavia RTE lettuce, from fresh lettuce up to completely spoiled (day 14) and correlate these results with the sensorial characteristics.  Research Method: The microbiome of vegetal RTE were examined using culture-dependent and culture-independent (16S rRNA metabarcoding) methods. Culture-dependent methods were related with the metagenomic results and sensory analysis to describe the evolution during spoilage and shelf-life. Findings: Our results demonstrated that the RTE lettuce bacteriome during spoilage is dominated by Gram-negative bacteria, mainly Flavobacterium and Pseudomonas. A bacterial population of 22 operational taxonomic units (OTUs) represent up to 96% of total bacterial reads and is maintained during the spoilage, representing the bacterial core of RTE lettuce. A high correlation was detected between culture-independent and culture-dependent results, both in general and selective culture media. Sensorial analysis of lettuce demonstrated that "odor" was the key parameter to determine the sensorial spoilage time and is related to total microbial load and to high concentrations of spoilage-related bacterial genera. Limitations: Hereby presented results are limited by the lettuce variety and by the storage conditions (MAP, 6°C, up to 14 days). Originality/Value: This paper describes an overview of the microbial and sensory evolution during spoilage of Batavia lettuce under MAP. A combination of culture-dependent and independent methods and sensorial analysis were used up to 14 days of storage.

Keywords

Main Subjects

Abriouel, H., Omar, N., Ben Pulido, R. P., Rosario Lucas López, E. O., Cañamero, M. M. & Gálvez, A. (2008). Vegetable fermentations. In L. Cocolin & D. Ercolini (Eds.), Molecular Techniques in the Microbial Ecology of Fermented Foods. New York Springer Springer. pp. 145-161.

Ahvenainen, R. (1996). New approaches in improving the shelf life of minimally processed fruit and vegetables. Trends in Food Science and Technology, 7(6), 179-187. https://doi.org/10.1016/0924-2244(96)10022-4

Alfaro, B., Hernández, I., Le Marc, Y. & Pin, C. (2013). Modelling the effect of the temperature and carbon dioxide on the growth of spoilage bacteria in packed fish products. Food Control, 29(2), 429-437. https://doi.org/10.1016/j.foodcont.2012.05.046

Allende, A., Aguayo, E. & Artés, F. (2004). Microbial and sensory quality of commercial fresh processed red lettuce throughout the production chain and shelf life. International Journal of Food Microbiology, 91(2), 109-117. https://doi.org/10.1016/S0168-1605 (03)00373-8

Ares, G., Lareo, C., & Lema, P. (2008). Sensory shelf life of butterhead lettuce leaves in active and passive modified atmosphere packages. International Journal of Food Science and Technology, 43(9), 1671-1677. https://doi.org/10.1111/j.1365-2621.2008.01736.x

Aw, T. G., Wengert, S., & Rose, J. B. (2016). Metagenomic analysis of viruses associated with field-grown and retail lettuce identifies human and animal viruses. International Journal of Food Microbiology, 223, 50-56. https://doi.org/10.1016/j.ijfoodmicro.2016.02.008

Bencardino, D., Vitali, L. A., & Petrelli, D. (2018). Microbiological evaluation of ready-to-eat iceberg lettuce during shelf-life and effectiveness of household washing methods. Italian Journal of Food Safety, 7(1), 50-54. https://doi.org/10.4081/ijfs.2018.6913

Caponigro, V., Ventura, M., Chiancone, I., Amato, L., Parente, E., & Piro, F. (2010). Variation of microbial load and visual quality of ready-to-eat salads by vegetable type, season, processor and retailer. Food Microbiology, 27(8), 1071-1077. https://doi.org/10.1016/j.fm.2010.07.011

De Azeredo, G. A., Stamford, T. L. M., Nunes, P. C., Gomes Neto, N. J., de Oliveira, M. E. G. & de Souza, E. L. (2011). Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochthonous microflora associated with minimally processed vegetables. Food Research International, 44(5), 1541-1548. https://doi.org/10.1016/j.foodres.2011.04.012

Di Carli, M., De Rossi, P., Paganin, P., Del Fiore, A., Lecce, F., Capodicasa, C., Bianco, L., Perrotta, G., Mengoni, A., Bacci, G., Daroda, L., Dalmastri, C., Donini, M., & Bevivino, A. (2016). Bacterial community and proteome analysis of fresh-cut lettuce as affected by packaging. FEMS Microbiology Letters, 363(1), 1-7. https://doi.org/10.1093/femsle/fnv209

Federico, B., Pinto, L., Quintieri, L., Carito, A., Calabrese, N., & Caputo, L. (2015). Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp. International Journal of Food Microbiology, 215, 179-186. https://doi.org/10.1016/j.ijfoodmicro.2015.09.017

Freeman, L. R., Silverman, G. J., Angelini, P., Jr, C. M., & Esselen, W. B. (1976). Volatiles produced by microorganisms isolated from refrigerated chicken at spoilage. Applied and Environmental Microbiology, 32(2), 222-231. https://doi.org/10.1128/aem.32.2.222-231.1976

Hunter, P. J., Hand, P., Pink, D., Whipps, J. M., & Bending, G. D. (2010). Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (lactuca species) phyllosphere. Applied and Environmental Microbiology, 76(24), 8117-8125. https://doi.org/10.1128/AEM.01321-10

Huse, S. M., Dethlefsen, L., Huber, J. A., Welch, D. M., Relman, D. A. & Sogin, M. L. (2008). Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics, 4(11). https://doi.org/10.1371/journal.pgen.1000255

Ioannidis, A. G., Kerckhof, F. M., Riahi Drif, Y., Vanderroost, M., Boon, N., & Ragaert, P. (2018), Characterization of spoilage markers in modified atmosphere packaged iceberg lettuce. International Journal of Food Microbiology, 279, 1-13. https://doi.org/10.1016/j.ijfoodmicro.2018.04.034

Jackson, C. R., Randolph, K. C., Osborn, S. L., & Tyler, H. L. (2013). Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiology, 13(1), 274-286. https://doi.org/10.1186/1471-2180-13-274

Jacxsens, L., Devlieghere, F., Ragaert, P., Vanneste, E., & Debevere, J. (2003). Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce. International Journal of Food Microbiology, 83(3), 263-280. https://doi.org/10.1016/S0168-1605(02)00376-8

Kahala, M., Blasco, L., & Joutsjoki, V. (2012). Molecular characterization of spoilage bacteria as a means to observe the microbiological quality of carrot. Journal of Food Protection 75(3), 523-532. https://doi.org/10.4315/0362-028X.JFP-11-185

Leff, J. W., & Fierer, N. (2013). Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One, 8(3), https://doi.org/10.1371/journal.pone.0059310

Legnani, P. P., & Leoni, E. (2004). Effect of processing and storage conditions on the microbiological quality of minimally processed vegetables. International Journal of Food Science and Technology, 39(10), 1061-1068. https://doi.org/10.1111/j.1365-2621.2004.00891.x

Lopez-Velasco, G., Welbaum, G. E. E., Boyer, R. R. R., Mane, S. P. P., & Ponder, M. A. A. (2011). Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. Journal of Applied Microbiology, 110(5), 1203-1214. https://doi.org/10.1111/j.1365-2672.2011.04969.x

Manani, T. A., Collison, E. K., & Mpuchane, S. (2006). Microflora of minimally processed frozen vegetables sold in Gaborone, Botswana. Journal of Food Protection, 69(11), 2581-2586. https://doi.org/10.4315/0362-028X-69.11.2581

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J,, Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk, G. P., & Rothberg, J. M. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376-380

Nguyen‐the, C., & Carlin, F. (1994). The microbiology of minimally processed fresh fruits and vegetables. Critical Reviews in Food Science and Nutrition, 34(4), 371-401. https://doi.org/10.1080/10408399409527668

Nübling, S., Schmidt, H., & Weiss, A. (2016). Variation of the Pseudomonas community structure on oak leaf lettuce during storage detected by culture-dependent and -independent methods. International Journal of Food Microbiology, 216(8), 95-103. https://doi.org/10.1016/j.ijfoodmicro.2015.09.007

Olaimat, A. N., & Holley, R. A. (2012). Factors influencing the microbial safety of fresh produce: A review. Food Microbiology, 32(1), 1-19. https://doi.org/10.1016/j.fm.2012.04.016

Oliveira, M., Usall, J., Viñas, I., Anguera, M., Gatius, F., & Abadias, M. (2010). Microbiological quality of fresh lettuce from organic and conventional production. Food Microbiology, 27(5), 679-684.  https://doi.org/10.1016/j.fm.2010.03.008

Parlapani, F. F. F., Meziti, A., Kormas, K. A. A., & Boziaris, I. S. S. (2013). Indigenous and spoilage microbiota of farmed sea bream stored in ice identified by phenotypic and 16S rRNA gene analysis. Food Microbiology, 33(1), 85-89. https://doi.org/10.1016/j.fm.2012.09.001

Ponce, A. G., Roura, S. I., del Valle, C. E., & Fritz, R. (2002). Characterization of native microbial population of swiss chard (Beta vulgaris, type cicla). LWT - Food Science and Technology, 35(2), 331-337. https://doi.org/10.1006/fstl.2001.0879

Pothakos, V., Snauwaert, C., De Vos, P., Huys, G., & Devlieghere, F. (2014). Monitoring psychrotrophic lactic acid bacteria contamination in a ready-to-eat vegetable salad production environment. International Journal of Food Microbiology, 185, 7-16. https://doi.org/10.1016/j.ijfoodmicro.2014.05.009

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F.O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Reseach, 41, 590-596. https://doi.org/10.1093/nar/gks1219

Ragaert, P., Devlieghere, F., Devuyst, E., Dewulf, J., Van Langenhove, H., & Debevere, J. (2006). Volatile metabolite production of spoilage micro-organisms on a mixed-lettuce agar during storage at 7 degrees C in air and low oxygen atmosphere. International Journal of Food Microbiology, 112(2), 162-170. https://doi.org/10.1016/j.ijfoodmicro.2006.06.018

Rastogi, G., Sbodio, A., Tech, J. J., Suslow, T. V, Coaker, G. L., & Leveau, J. H. J. (2012). Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME Journal, 6(10), 1812-1822. https://doi.org/10.1038/ismej.2012.32

Rudi, K., Flateland, S. L., Hanssen, J. F., Bengtsson, G., & Nissen, H. (2002). Development and evaluation of a 16S Ribosomal DNA Array-Based Approach for describing complex microbial communities in Ready-To-Eat vegetable salads packed in a modified atmosphere. Applied and Environmental Microbiology, 68(3), 1146-1156. https://doi.org/10.1128/AEM.68.3.1146-1156.2002

Salgado, S. P., Pearlstein, A. J., Luo, Y., & Feng, H. (2014). Quality of Iceberg (Lactuca sativa L.) and Romaine (L. sativa L. var. longifolial) lettuce treated by combinations of sanitizer, surfactant, and ultrasound. LWT - Food Science Technology, 56(2), 261-268. https://doi.org/10.1016/j.lwt.2013.11.038

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing Mothur: Open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541. https://doi.org/10.1128/aem.01541-09

Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-Based studies. PLoS One, 6(12), e27310. https://doi.org/10.1371/journal.pone.0027310

Tournas, V. H. (2005). Spoilage of vegetable crops by bacteria and fungi and related health hazards. Critical Reviews in Microbiology, 31(1), 33-44. https://doi.org/10.1080/10408410590886024

Tsironi, T., Dermesonlouoglou, E., Giannoglou, M., Gogou, E., Katsaros, G., & Taoukis, P. (2017). Shelf-life prediction models for ready-to-eat fresh cut salads: Testing in real cold chain. International Journal of Food Microbiology, 240(1), 131-140. https://doi.org/10.1016/j.ijfoodmicro.2016.09.032

Yu, Y. C., Yum, S. J., Jeon, D. Y., & Jeong, H. G. (2018). Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. Journal of Microbiology and Biotechnology, 28(8), 1318-1331. https://doi.org/10.4014/jmb.1803.03007

Zagory, D. (1999). Effects of post-processing handling and packaging on microbial populations. Postharvest Biology and Technology, 15(3), 313-321. https://doi.org/10.1016/S0925-5214(98)00093-3