Document Type: Original Article

Authors

1 Department of Food Technology, School of Biotechnology, International University

2 Vietnam National University, Ho Chi Minh city

Abstract

Purpose: Recently, there are researches showed positive effects of nano-chitosan in prolonging the postharvest quality and shelf life of strawberry, however, influences of storage temperatures on the nano-chitosan coated fruit have been overlooked. Therefore, in this work, changes of physiological traits of strawberry (Fragaria × ananassa Duch.) coated with 0.2% nano-chitosan and stored at different temperatures were studied. Research Method: Strawberry was coated with 0.2% nano-chitosan and stored at different temperatures (2°C, 5°C, 10°C and 25°C) for 12 days. The effects of temperatures on the coated fruits were tested by measuring visual quality, weight loss, antioxidant properties, malondialdehyde content, firmness, total soluble solid, polyphenol oxidase activity in three days intervals. Findings: After storing 0.2% nano-chitosan coated strawberry at four different temperatures, 2°C showed the most effective one as maintaining the overall quality of strawberry higher than the acceptable/marketable level after 12 days; meanwhile, fruits stored at 25°C were quickly decayed after 3 days. The treatments at low temperatures (2°C, and 5°C) significantly reduced weight loss, maintained firmness, total soluble solid, polyphenol oxidase activity and malondialdehyde content of the stored fruits. Limitations: Nano-chitosan has not been widely traded. Originality/Value: Coating strawberry with nano-chitosan and storing at 2°C effectively maintained the postharvest quality of strawberry as well. This treatment is quite simple and would be useful for stakeholders in the strawberry supply chain. 

Keywords

Main Subjects

AOAC. (1990). Titrable Acidity 942.15. AOAC Official Methods of Analysis, 15th ed.

Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & González-Aguilar, G. A. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT-Food Science and Technology, 37(7), 687-695. https://doi.org/10.1016/j.lwt.2004.03.002

Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & González-Aguilar, G. A. (2005). Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit. European Food Research and Technology, 221(6), 731-738. https://doi.org/10.1007/s00217-005-0069-z

Brat, P., Mennen, L., George, S., Scalbert, A., Bellamy, A., Amiot-Carlin, M., & Chaffaut, L. (2007). Determination of the polyphenol content of fruits and vegetables. Establishment of a database and estimation of the polyphenol intake in the French diet. Acta Horticulturae, 744, 61-70. https://doi.org/10.17660/actahortic.2007.744.5

Brummell, D. A. (2006). Cell wall disassembly in ripening fruit. Functional Plant Biology, 33(2), 103-119. https://doi.org/10.1071/fp05234

Brummell, D. A., & Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 47(1-2), 311-339.

Cordenunsi, Genovese, M. I., do Nascimento, J. R. O., Hassimotto, N. M. A., dos Santos, R. J., & Lajolo, F. M. (2005). Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chemistry, 91(1), 113-121. https://doi.org/10.1016/j.foodchem.2004.05.054

Cordenunsi, Nascimento, J. d., & Lajolo, F. (2003). Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chemistry, 83(2), 167-173. https://doi.org/10.1016/S0308-8146(03)00059-1

Gardesh, A. S. K., Badii, F., Hashemi, M., Ardakani, A. Y., Maftoonazad, N., & Gorji, A. M. (2016). Effect of nanochitosan based coating on climacteric behavior and postharvest shelf-life extension of apple cv. Golab Kohanz. LWT - Food Science and Technology, 70, 33-40. https://doi.org/10.1016/j.lwt.2016.02.002

Giusti, M. M., Rodriguez-Saona, L., & Wrolstad, R. (1999). Spectral characteristics, molar absorptivity and color of pelargonidin derivatives. Journal of Agricultural and Food Chemistry, 47(11), 4631-4637. https://doi.org/10.1021/jf981271k

 Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current Protocols in Food Analytical Chemistry, 00, F1.2.1-F1.2.13. https://doi.org/10.1002/0471142913.faf0102s00

Goulao, L., Fernandes, J., Lopes, P., & Amâncio, S. (2012). Tackling the cell wall of the grape berry: Bentham Science Publishers.

Goy, R. C., Britto, D. D., & Assis, O. B. (2009). A review of the antimicrobial activity of chitosan. Polímeros, 19(3), 241-247. https://doi.org/10.1590/S0104-14282009000300013 

Han, Lederer, C., McDaniel, M., & Zhao, Y. (2005). Sensory evaluation of fresh strawberries (Fragaria ananassa) coated with chitosan‐based edible coatings. Journal of Food Science, 70(3), 172-178. https://doi.org/10.1111/j.1365-2621.2005.tb07153.x

Han, Zhao, Y., Leonard, S., & Traber, M. (2004). Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria× ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33(1), 67-78. https://doi.org/10.1016/j.postharvbio.2004.01.008

Hangun-Balkir, Y., & McKenney, M. L. (2012). Determination of antioxidant activities of berries and resveratrol. Green Chemistry Letters and Reviews, 5(2), 147-153. https://doi.org/10.1080/17518253.2011.603756

Hardenburg, R. E., Watada, A. E., & Wang, C. Y. (1986). The commercial storage of fruits, vegetables, and florist and nursery stocks. Agriculture Handbook, USDA. pp.66-130.

Hernández-Muñoz, P., Almenar, E., Del Valle, V., Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria× ananassa) quality during refrigerated storage. Food Chemistry, 110(2), 428-435. https://doi.org/10.1016/j.foodchem.2008.02.020

Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. https://doi.org/10.1007/s004250050524

Holzwarth, M., Korhummel, S., Carle, R., & Kammerer, D. R. (2012). Evaluation of the effects of different freezing and thawing methods on color, polyphenol and ascorbic acid retention in strawberries (Fragaria× ananassa Duch.). Food Research International, 48(1), 241-248. https://doi.org/10.1016/j.foodres.2012.04.004

Islam, M., Khan, M., Sarkar, M., Absar, N., & Sarkar, S. (2013). Changes in acidity, TSS, and sugar content at different storage periods of the postharvest mango (Mangifera indica L.) influenced by bavistin DF. International Journal of Food Science, 2013, 1-8. https://doi.org/10.1155/2013/939385

ISO:14502. (2005). Content of total polyphenols in tea - Colorimetric method using Folin-Ciocalteu reagent.

Ivanova, V., Vojnoski, B., & Stefova, M. (2012). Effect of winemaking treatment and wine aging on phenolic content in Vranec wines. Journal of Food Science and Technology, 49(2), 161-172. https://doi.org/10.1007/s13197-011-0279-2

Jiang, Y., Yu, L., Hu, Y., Zhu, Z., Zhuang, C., Zhao, Y., & Zhong, Y. (2020). The preservation performance of chitosan coating with different molecular weight on strawberry using electrostatic spraying technique. International Journal of Biological Macromolecules, 151, 278-285. https://doi.org/10.1016/j.ijbiomac.2020.02.169

Kalt, W., Forney, C. F., Martin, A., & Prior, R. L. (1999). Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 47(11), 4638-4644. https://doi.org/10.1021/jf990266t

Kapur, A., Hasković, A., Čopra-Janićijević, A., Klepo, L., Topčagić, A., Tahirović, I., & Sofić, E. (2012). Spectrophotometric analysis of total ascorbic acid content in various fruits and vegetables. Bull Chem Technol Bosnia Herzegovina, 38(4), 39-42.

Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1-27. https://doi.org/10.1016/S1381-5148(00)00038-9

Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207-220. https://doi.org/10.1016/s0925-5214(00)00133-2

Li, C., & Kader, A. A. (1989). Residual effects of controlled atmospheres on postharvest physiology and quality. Journal of the American Society for Horticultural Science, 114, 629-634.

Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47-55.    https://doi.org/10.1016/j.postharvbio.2018.01.016

Lorevice, M. V., Moura, M. R. D., Aouada, F. A., & Mattoso, L. H. (2012). Development of novel guava puree films containing chitosan nanoparticles. Journal of Nanoscience and Nanotechnology, 12(3), 2711-2717. https://doi.org/10.1166/jnn.2012.5716

Maftoonazad, N., Ramaswamy, H. S., & Marcotte, M. (2008). Shelf‐life extension of peaches through sodium alginate and methyl cellulose edible coatings. International Journal of Food Science and Technology, 43(6), 951-957. https://doi.org/10.1111/j.1365-2621.2006.01444.x

Martínez, K., Ortiz, M., Albis, A., Gilma Gutiérrez Castañeda, C., Valencia, M. E., & Grande Tovar, C. D. (2018). The effect of edible chitosan coatings incorporated with Thymus capitatus essential oil on the shelf-life of strawberry (Fragaria × ananassa) during cold storage. Biomolecules, 8(4), 155. https://doi.org/10.3390/biom8040155

Mercantila, F. (1989). Guide to food transport: fruit and vegetables: Mercantila Publishers.

Nayak, S. L., Sethi, S., Sharma, R., Sharma, R., Singh, S., & Singh, D. (2020). Aqueous ozone controls decay and maintains quality attributes of strawberry (Fragaria × ananassa Duch.). Journal of Food Science and Technology, 57(1), 319-326. https://doi.org/10.1007/s13197-019-04063-3

Nguyen, D. H., & Nguyen, H. V. (2020). Effects of nano-chitosan and chitosan coating on the postharvest quality, polyphenol oxidase activity and malondialdehyde content of strawberry (Fragaria × ananassa Duch.). Journal of Horticulture and Postharvest Research, 3(1), 11-24. https://doi.org/10.22077/JHPR.2019.2698.1082

Nguyen, V. T., Nguyen, D. H., & Nguyen, H. V. (2020). Combination effects of calcium chloride and nano-chitosan on the postharvest quality of strawberry (Fragaria × ananassa Duch.). Postharvest Biology and Technology, 162, 111103. https://doi.org/10.1016/j.postharvbio.2019.111103

Nunes, M. C. N., Brecht, J. K., Morais, A. M. M. B., & Sargent, S. A. (1998). Controlling temperature and water loss to maintain ascorbic acid levels in strawberries during postharvest handling. Journal of Food Science, 63(6), 1033-1036. https://doi.org/10.1111/j.1365-2621.1998.tb15848.x

Nunes, M. C. N., Brecht, J. K., Morais, A. M. M. B., & Sargent, S. A. (2005). Possible influences of water loss and polyphenol oxidase activity on anthocyanin content and discoloration in fresh ripe strawberry (cv. Oso Grande) during storage at 1 C. Journal of Food Science, 70(1), 79-84.     https://doi.org/10.1111/j.1365-2621.2005.tb09069.x

Nunes, N., & Cecilia, M. (2015). Correlations between subjective quality and physicochemical attributes of fresh fruits and vegetables. Postharvest Biology and Technology, 107, 43-54.     https://doi.org/10.1016/j.postharvbio.2015.05.001

Perkins‐Veazie, P. (2010). Growth and ripening of strawberry fruit. Horticultural Reviews, 17, 267-297. https://doi.org/10.1002/9780470650585.ch8

Petriccione, M., Mastrobuoni, F., Pasquariello, M. S., Zampella, L., Nobis, E., Capriolo, G., & Scortichini, M. (2015). Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods, 4(4), 501-523. https://doi.org/10.3390/foods4040501

Rana, S., Mehta, D., Bansal, V., Shivhare, U., & Yadav, S. K. (2020). Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. Journal of Food Science and Technology, 57(1), 102-112. https://doi.org/10.1007/s13197-019-04035-7

Sahari, M. A., Boostani, F. M., & Hamidi, E. Z. (2004). Effect of low temperature on the ascorbic acid content and quality characteristics of frozen strawberry. Food Chemistry, 86(3), 357-363. https://doi.org/10.1016/j.foodchem.2003.09.008

Savicka, M., & Škute, N. (2010). Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija, 56(1), 26-33. https://doi.org/10.2478/v10055-010-0004-x

SeaLand, M. (1991). Shipping guide to perishables. SeaLand Services Inc., Iselim, New Jersey, USA.

Shin, Y., Liu, R. H., Nock, J. F., Holliday, D., & Watkins, C. B. (2007). Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology, 45(3), 349-357.    https://doi.org/10.1016/j.postharvbio.2007.03.007

Shin, Y., Ryu, J. A., Liu, R. H., Nock, J. F., & Watkins, C. B. (2008). Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biology and Technology, 49(2), 201-209. https://doi.org/10.1016/j.postharvbio.2008.02.008

Silvestre, C., Duraccio, D., & Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12), 1766-1782. https://doi.org/10.1016/j.progpolymsci.2011.02.003

Srivalli, B., Chinnusamy, V., & Khanna-Chopra, R. (2003). Antioxidant defense in response to abiotic stresses in plants. Journal of Plant Biology-New Delhi, 30(2), 121-140.

Timberlake, C., & Bridle, P. (1982). Distribution of anthocyanins in food plants: Academic Press, New York.

Valenzuela, J. L., Manzano, S., Palma, F., Carvajal, F., Garrido, D., & Jamilena, M. (2017). Oxidative stress associated with chilling injury in immature fruit: Postharvest technological and biotechnological solutions. International Journal of Molecular Sciences, 18(7), 1467. https://doi.org/10.3390/ijms18071467

Wang, H., Cao, G., & Prior, R. L. (1996). Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 44(3), 701-705. https://doi.org/10.1021/jf950579y

Yang, F., Li, H., Li, F., Xin, Z., Zhao, L., Zheng, Y., & Hu, Q. (2010). Effect of nano‐packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during Storage at 4° C. Journal of Food Science, 75(3), 236-240. https://doi.org/10.1111/j.1750-3841.2010.01520.x

Yoon, Y. S., Ameer, K., Song, B. S., Kim, J. K., Park, H. Y., Lee, K. C., Eun, J. B., & Park, J. H. (2020). Effects of X-ray irradiation on the postharvest quality characteristics of ‘Maehyang’ strawberry (Fragaria× ananassa). Food Chemistry, 325,  126817. https://doi.org/10.1016/j.foodchem.2020.126817

Zhang, X., & Xingfeng, S. (2015). Characterisation of polyphenol oxidase and peroxidase and the role in browning of loquat fruit. Czech Journal of Food Science, 33(2), 109-117. https://doi.org/10.17221/384/2014-CJFS