Document Type: Original Article

Authors

Department of Plant Pathology, College of Agriculture, University of Birjand, Birjand, Iran

Abstract

Purpose: Chitin is a structural, long_chain polysaccharide of N-acetylglucosamine subunits with beta 1,4 glycosylated bonds and the second post-cellulose polysaccharide in nature. Chitinases enzymes are capable of degrading chitin, plays essential roles in the decomposition of chitinous wastes, can be used as a biological fungicide against phytopathogenic fungi. Research method: Fusarium isolates were recovered from soil, the spore of phytopathogenic fungi, and cereal tissues in different areas of Birjand plain during 2013-2017. A chitinase enzyme activity assay was performed using the Lugol''''s solution staining method and genomic replication by DECH degenerate primers. Findings: Eighty-three isolates of Fusarium presenting the chitinolytic activity were recovered from soil, cereal plant tissues from different areas of the Birjand plain in Iran. Some isolates were also recovered from barley loose smut and barberry rust spores. Chitinase enzyme activity was detected in Fusarium solani, F. proliferatum, F. avenaceum, F. fujikuroi, F. acuminatum, F. semitectum, F. culmorum, F. equiseti, F. nygamai, F. diversisporum, F. oxysporum and F. longipes by chitinase bioassay method and/or DECH primers for chitinase. Limitations: There were no limitations to report.Originality/Value: Based on the molecular data, the secreted chitinases belonged to chitinse1 or endochitinase-42 kDa, members of GH family 18. This is the first report of chitinases from Fusarium species in Iran.

Graphical Abstract

Keywords

Main Subjects

Adams, D. J. (2004). Fungal cell wall chitinases and glucanases. Microbiology, 150(7), 2029-2035. https://doi.org/10.1099/mic.0.26980-0

Afsarzadeh Laein, M., & Mohammadi, A. (2018). Chitinolytic fungi from the Birjand plain of Southern Khorasan Province in Eastern Iran. Acta Mycologica, 53(1), 1-12. https://doi.org/10.5586/am.1107

Besharati Fard, M., Mohammadi, A., & Darvishnia, M. (2017). Fusarium species associated with Wheat crown and root tissues in the Eastern Iran. Archives of Phytopathology and Plant Protection, 50(3-4), 123-133. https://doi.org/10.1080/03235408.2016.1275423

Brandfass, C., & Karlovsky, P. (2008). Upscaled CTAB-based DNA extraction and real-time PCR assays for Fusarium culmorum and F. graminearum DNA in plant material with reduced sampling error. International Journal of Molecular Sciences, 9(11), 2306-2321. https://doi.org/10.3390/ijms9112306

De Marco, J. L., Lima, L. H. C., de Sousa, M. V., & Felix, C. R. (2000). A Trichoderma harzianum chitinase destroys the cell wall of the phytopathogen Crinipellis perniciosa, the causal agent of witches'''' broom disease of cocoa. World Journal of Microbiology and Biotechnology, 16(4), 383-386. https://doi.org/10.1023/a:1008964324425

Di Giambattista, R., Federici, F., Petruccioli, M., & Fenice, M. (2001). The chitinolytic activity of Penicillium janthinellum P9: purification, partial characterization and potential applications. Journal of Applied Microbiology, 91(3), 498-505. https://doi.org/10.1046/j.1365-2672.2001.01409.x

Dong, L. Q., Yang, J. K., & Zhang, K. Q. (2007). Cloning and phylogenetic analysis of the chitinase gene from the facultative pathogen Paecilomyces lilacinus. Journal of Applied Microbiology, 103(6), 2476-2488. https://doi.org/10.1111/j.1365-2672.2007.03514.x

Fan, Y., Fang, W., Xiao, Y., Yang, X., Zhang, Y., Bidochka, M., & Pei, Y. (2007). Directed evolution for increased chitinase activity. Applied Microbiology and Biotechnology, 76(1), 135-139. https://doi.org/10.1007/s00253-007-0996-7

Geiser, D. M., del Mar Jiménez-Gasco, M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., Zhang, N., Kuldau, G. A., & O´Donnell, K. (2004). Fusarium-ID v. 1.0: a DNA sequence database for identifying Fusarium. European Journal of Plant Pathology, 110(5-6), 473-479. https://doi.org/10.1007/978-1-4020-2285-2_2 

Gooday, G. W., Humphreys, A. M., & McIntosh, W. H. (1986). Roles of chitinases in fungal growth. In M. Riccardo, J. Charles, & W. G. Graham (Eds.), Chitin in Nature and Technology (pp. 594), Plenum Press.

Govinda Rajulu, M. B., Thirunavukkarasu, N., Suryanarayanan, T. S., Ravishankar, J. P., El Gueddari, N. E., & Moerschbacher, B. M. (2010). Chitinolytic enzymes from endophytic fungi. Fungal Diversity, 47(1), 43-53. https://doi.org/10.1007/s13225-010-0071-z

Griffiths, L. J., Anyim, M., Doffman, S. R., Wilks, M., Millar, M. R., & Agrawal, S. G. (2006). Comparison of DNA extraction methods for Aspergillus fumigatus using real-time PCR. Journal of Medical Microbiology, 55(Pt 9), 1187-1191. https://doi.org/10.1099/jmm.0.46510-0

Harighi, M., Motalebi, M., & Zamani, M. (2006). Purification of chitinase 42 from Trichoderma atroviride PTCC5220. Iranian Journal of Biology. 19(2), 203-214.

Harman, G., Hayes, C., Lorito, M., Broadway, R., Di Pietro, A., Peterbauer, C., & Tronsmo, A. (1993). Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Journal of Phytopathology, 83(3), 313-318. https://doi.org/10.1094/phyto-83-313 

Homthong, M., Kubera, A., Srihuttagum, M., & Hongtrakul, V. (2016). Isolation and characterization of chitinase from soil fungi, Paecilomyces sp. Agriculture and Natural Resources, 50(4), 232-242. https://doi.org/10.1016/j.anres.2015.09.005

Hsu, S., & Lockwood, J. (1975). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied Microbiology, 29(3), 422-426. https://doi.org/10.1128/aem.29.3.422-426.1975 

Kang, S. C., Park, S., & Lee, D. G. (1999). Purification and characterization of a novel chitinase from the entomopathogenic fungus, Metarhizium anisopliae. Journal of Invertebrate Pathology, 73(3), 276-281. https://doi.org/10.1006/jipa.1999.4843

Karlsson, M., & Stenlid, J. (2008). Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. Evolutionary Bioinformatics, 4, 47-60.  https://doi.org/10.4137/ebo.s604 

Khoushab, F., & Yamabhai, M. (2010). Chitin research revisited. Marine Drugs, 8(7), 1988-2012. https://doi.org/10.3390/md8071988

Koyama, T., Sato, F., & Ohme-Takagi, M. (2017). Roles of miR319 and TCP transcription factors in leaf development. Plant Physiology, 175(2), 874-885. https://doi.org/10.1104/pp.17.00732

Küçük, Ç., & Kivanç, M. (2003). Isolation of Trichoderma spp. and determination of their antifungal, biochemical and physiological features. Turkish Journal of Biology, 27(4), 247-253.

Leslie, J. F., & Summerell, B. A. (2008). The Fusarium laboratory manual: John Wiley & Sons.

Loc, N. H., Quang, H. T., Hung, N. B., Huy, N. D., Phuong, T. T., & Ha, T. T. (2011). Trichoderma asperellum Chi42 Genes Encode Chitinase. Mycobiology, 39(3), 182-186. https://doi.org/10.5941/MYCO.2011.39.3.182

Mathivanan, N., Kabilan, V., & Murugesan, K. (1998). Purification, characterization, and antifungal activity of chitinase from Fusarium chlamydosporum, a mycoparasite to groundnut rust, Puccinia arachidis. Canadian Journal of Microbiology, 44(7), 646-651. https://doi.org/10.1139/w98-043

Meng, H., Wang, Z., Meng, X., Xie, L., & Huang, B. (2015). Cloning and expression analysis of the chitinase gene Ifu-chit2 from Isaria fumosorosea. Genetics and Molecular Biology, 38(3), 381-389. https://doi.org/10.1590/S1415-475738320150003

Mohapatra, S., & Parhi, A. (2017). Screening and characterization of rhizospheric chitinolytic bacteria for evaluation of their potential as biocontrol agent against fhytopathogenic fungi. International Journal of Current Microbiology and Applied Sciences, 6(9), 3457-3463.      https://doi.org/10.20546/ijcmas.2017.609.424

Mythili, J., Chethana, B., Rajeev, P., & Ganeshan, G. (2018). Chitinase gene construct from Trichoderma harzianum proved effective against onion purple blotch caused by Alternaria porri. Indian Journal of Biotechnology, 17(1), 50-56.

Naim, F., Dugdale, B., Kleidon, J., Brinin, A., Shand, K., Waterhouse, P., & Dale, J. (2018). Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Research, 27(5), 451-460. https://doi.org/10.1007/s11248-018-0083-0

Nuero, O. M. (1995). Production of chitinase by Fusarium species. Current Microbiology, 30(5), 287-289. https://doi.org/10.1007/BF00295503

Patel, S., & Goyal, A. (2017). Chitin and chitinase: Role in pathogenicity, allergenicity and health. International Journal of Biological Macromolecules, 97, 331-338. https://doi.org/10.1016/j.ijbiomac.2017.01.042

Poshina, D. N., Raik, S. V., Poshin, A. N., & Skorik, Y. A. (2018). Accessibility of chitin and chitosan in enzymatic hydrolysis: A review. Polymer Degradation and Stability, 156, 269-278.     https://doi.org/10.1016/j.polymdegradstab.2018.09.005

Prasetyawan, S., Sulistyowati, L., & Aulanni’am. (2018). Glucanase and chitinase from some isolates of endophytic fungus Trichoderma spp. IOP Conference Series: Materials Science and Engineering, 299(1), 012026-012026. https://doi.org/10.1088/1757-899x/299/1/012026

Seyed Asli, N., Harighl, M., Zamani, M., & Motalebi, M. (2004). Study of chitinolytic enzyme production in Trichoderma isolates. Iranian Journal of Biology, 17(3), 227-246.

Snyder, W., & Nash, S. M. (1968). Relative incidence of Fusarium pathogens of cereals in rotation plots at Rothamsted. Transactions of the British Mycological Society, 51(3-4), 417-425.     https://doi.org/10.1016/s0007-1536(68)80009-9

Synowiecki, J., & Al-Khateeb, N. A. (2003). Production, properties, and some new applications of chitin and its derivatives. Critical Reviews in Food Science and Nutrition, 43(2), 145-171.     https://doi.org/10.1080/10408690390826473

Szilagyi, M., Anton, F., Pocsi, I., & Emri, T. (2018). Autolytic enzymes are responsible for increased melanization of carbon stressed Aspergillus nidulans cultures. Journal of Basic Microbiology, 58(5), 440-447. https://doi.org/10.1002/jobm.201700545

Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J., & Jansson, H. B. (2002). Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genetics and Biology, 35(1), 67-78. https://doi.org/10.1/006fgbi.2001.1312

van Munster, J. M., van der Kaaij, R. M., Dijkhuizen, L., & van der Maarel, M. J. (2012). Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. Microbiology, 158(Pt 8), 2168-2179. https://doi.org/10.1099/mic.0.054650-0

Waksman, S., & Fred, E. (1922). A tentative outline of the plate method for determining the number of micro-organisms in the soil. Soil Science, 14(1), 27-28. https://doi.org/10.1097/00010694-192207000-00004 

Xia, G., Jin, C., Zhou, J., Yang, S., Zhang, S., & Jin, C. (2001). A novel chitinase having a unique mode of action from Aspergillus fumigatus YJ-407. European Journal of Biochemistry, 268(14), 4079-4085. https://doi.org/10.1046/j.1432-1327.2001.02323.x

Xian, H., Li, J., Zhang, L., & Li, D. (2012). Cloning and functional analysis of a novel chitinase gene Trchi1 from Trichothecium roseum. Biotechnology Letters, 34(10), 1921-1928. https://doi.org/10.1007/s10529-012-0989-1