Document Type: Original Article


1 Research Unit in Agrobiodiversity (UR13AGR05), Higher Agronomic Institute, Chott-Mariem, IRESA-University of Sousse, Tunisia

2 Department of Agricultural, Food and Environmental Sciences (SAFE), University of Foggia, Foggia, Italy


Purpose: Ready to eat arils can be a value-added product as an alternative use for the whole pomegranate fruit by offering more convenience to the consumer. Recently, the diffusion of local cultivars with typical and unique quality characteristics will offer new opportunities for the fresh international market. Research method: This study aimed to evaluate the quality of arils from five cultivars, namely Gabsi (GB), Jebali (JB), Khalledi (KH), Tounsi (TN), and Zehri (ZH) to be used for ready to eat market, as well as to provide a form of valorization for these cultivars. Findings: Significant differences found between cultivars for most of the evaluated quality parameters. KH, GB, and JB were the cultivars with the best initial quality. PCA separated the investigated cultivars based on the storage period. Among the studied cultivars, the main changes in color and sensory quality attributes during storage have been registered for the cultivars JB and KH. TN showed slight color difference during storage. GB had right color intensity, maintained high content of anthocyanins, and the best sensory evaluation at the end of storage. Limitations: Based on their nutritional quality, cultivars GB and KH were the best cultivars for ready to eat arils processing. However, a proper selection of initial quality should be considered. Originality/Value: The richness of local Tunisian pomegranate cultivars with its typical and unique quality traits. They could be used as a ready to eat form to valorize the whole fruit thereby, will enhance marketing demand.


Main Subjects

Abid, M., Yaich, H., Hidouri, H., Attia, H., & Ayadi, M. A. (2018). Effect of substituted gelling agents from pomegranate peel on color, textural and sensory properties of pomegranate jam. Food Chemistry, 239, 1047-1054.

Alcaraz-Mármol, F., Nuncio-Jáuregui, N., García-Sánchez, F., Martínez-Nicolás, J. J., & Hernández, F. (2017). Characterization of twenty pomegranate (Punica granatum L.) cultivars grown in Spain: Aptitudes for fresh consumption and processing. Scientia Horticulturae, 219, 152-160.

Ansah, F. A., Amodio, M. L., De Chiara, M. L. V., & Colelli, G. (2018). Effects of equipment and processing conditions on quality of fresh-cut produce. Journal of Agricultural Engineering, 827, 139-150.

Arendse, E., Fawole, O. A., & Opara, U. L. (2015). Effects of postharvest handling and storage on physiological attributes and quality of pomegranate fruit (Punica granatum L.): a review. International Journal of Postharvest Technology and Innovation, 5(1), 13-31.

Ayhan, Z., & Eştürk, O. (2009). Overall quality and shelf life of minimally processed and modified atmosphere packaged “ready-to-eat” pomegranate arils. Journal of Food Science, 74(5), C399-C405. 10.1111/j.1750-3841.2009.01184.x

Banda, K., Caleb, O. J., Jacobs, K., & Opara, U. L. (2015). Effect of active-modified atmosphere packaging on the respiration rate and quality of pomegranate arils (cv. Wonderful). Postharvest Biology and Technology, 109, 97-105.

Ben Amara, M., Abdelli, S., De Chiara, M. L. V., Pati, S., Amodio, M. L., Colelli, G., & Ben Abda, J. (2020). Changes in quality attributes and volatile profile of ready-to-eat “Gabsi” pomegranate arils as affected by storage duration and temperatures. Journal of Food Processing and Preservation, e14415.

Belay, Z. A., Caleb, O. J., & Opara, U. L. (2017). Impacts of low and super-atmospheric oxygen concentrations on quality attributes, phytonutrient content, and volatile compounds of minimally processed pomegranate arils (cv. Wonderful). Postharvest Biology and Technology, 124 (Supplement C), 119-127.

Bhatia, K., Asrey, R., & Varghese, E. (2015). Correct packaging retained phytochemical, antioxidant properties, and increases the shelf-life of minimally-processed pomegranate (Punica granatum L.) arils cv. Mridula. Journal of Scientific and Industrial Research, 74, 141-144.

Brand Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-wissenschaft Technology, 28, 25-30.

Brownmiller, C., & Howard, L. R.  (2008). Prior processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blueberry products. Journal of Food Science, 73(5), 72-79.

Caleb, O. J., Opara, U. L., & Witthuhn, C. R. (2011). Modified Atmosphere Packaging of Pomegranate Fruit and Arils: A Review. Food Bioprocess Technology, 5, 15-30.

Caleb, O. J., Mahajan, P. V., Opara, U. L., & Witthuhn, C. R. (2012). Modeling the respiration rates of pomegranate fruit and arils. Postharvest Biology and Technology, 64(1), 49-54.

Caleb, O. J., Opara, U. L., Mahajan, P. V., Manley, M., Mokwena, L., & Tredoux, A. G. J. (2013). Effect of modified atmosphere packaging and storage temperature on the volatile composition and postharvest life of minimally processed pomegranate arils (CVs. ‘Acco’ and ‘Herskawitz’). Postharvest Biology and Technology, 79, 54-61.

Çam, M., Yasar, H., & Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chemistry, 112, 721-726.

Cisneros-Zevallos, L. (2003). The Use of Controlled Postharvest Abiotic Stresses as a Tool for Enhancing the Nutraceutical Content and Adding-Value of Fresh Fruits and Vegetables. Journal of Food Science, 68(5), 1560-1565.

D’Aquino, S., Palma, A., Schirra, M., Continella, A., Tribulato, E., & La Malfa, S. (2010). Influence of film wrapping and fludioxonil application on the quality of pomegranate fruit. Postharvest Biology and Technology, 55(2), 121-128.

Fawole, O. A., & Opara, U. L. (2014). Physicomechanical, phytochemical, volatile compounds and free radical scavenging properties of eight pomegranate cultivars and classification by principal component and cluster analyses. British Food Journal, 116, 544-567.

Kader, A. A., Alexander, C., & Salaheddin, E. (1984). Responses of pomegranates to ethylene treatment and storage temperature: Fully ripe fruit can be safely stored for long periods if not over-chilled. California Agriculture. (pp. 14-15).

Laleh, G., H., Frydoonfar, H., Heidary, R., Jameei, R., & Zare, S. (2006). The effect of light, temperature, pH, and species on stability of anthocyanins pigments in four Berberis species.  Pakistan Journal of Nutrition, 5(1), 90-92.

Mars, M., & Marrakchi, M. (1998). Diversity of pomegranate (Punica granatum L.) germplasm in Tunisia. Genetic Resources and Crop Evolution, 46, 461-467.

Martinez-Romero, D., Castillo, S., Guillén, F., Díaz-Mula, H. M., Zapata, P. J., Valero, D., & Serrano, M. (2013). Aloe vera gel coating maintains the quality and safety of ready-to-eat pomegranate arils. Postharvest Biology and Technology, 86, 107-112.

Mena, P., García, Viguera C., Navarro, Rico, J., Moreno, D. A., Bartual, J., Saura, D., & Martí, N. (2011). The phytochemical characterization for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. Journal of the Science of Food and Agriculture, 91(10), 1893-1906.

Moradinezhad, F., Ansarifar, E., & Moghaddam, M. M. (2020). Extending the shelf life and maintaining quality of minimally-processed pomegranate arils using ascorbic acid coating and modified atmosphere packaging. Journal of Food Measurement and Characterization, 14(6), 3445-3454.

O'Grady, L., Sigge, G., Caleb, O. J., & Opara, U. L. (2014). Effects of storage temperature and duration on chemical properties, proximate composition, and selected bioactive component of pomegranate (Punica granatum L.) arils. LWT - Food Science and Technology, 57(2), 508-515.

Palma, A., Schirra, M., D’ Aquino, S., La Malfa, S., & Continella, G. (2009). Chemical properties changes in pomegranate seeds packaged in polypropylene trays. Acta Horticulturae, 818, 323-330.

Sepùlveda, E., Sáenz, C., Galletti, L., & Tapia, M. (2000) Minimal processing of pomegranate var. Wonderful. In P. Melgarejo, J.J. Martínez-Nicolás, J. Martínez-Tomé. Production, processing and marketing of pomegranate in the Mediterranean region: Advances in research and technology. Zaragoza CIHEAM, Options Méditerranéennes: Série A. Séminaires Méditerranéens (pp. 237-242).

Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 99, 152-178.

Talarposhti, S.T., Barzegar, M., & Hamidi-Esfahani, Z. (2016). Effect of modified atmosphere packaging on aril physico-chemical and microbial properties of two pomegranate cultivars (Punica granatum L.) grown in Iran. Nutrition and Food Science Resources, 3, 29-40.

Zaouay, F., Mena, P., Garcia-Viguera, C., & Mars, M. (2012). Antioxidant activity and physico-chemical properties of Tunisian grown pomegranate (Punica granatum L.) cultivars. Industrial Crops and Products, 40, 81-89.

Zaouay, F., & Mars, M. (2011). Diversity among Tunisian pomegranate (Punica granatum) cultivars as assessed by pomological and chemical traits. International Journal of Fruit Science, 11(2), 151-166.

Zapata, S., & Dufour, J. F. (1992). Ascorbic and deyhdro-as`corbic and iso-ascorbic acid simultaneous determinations by reverse phase ion interaction HPLC. Journal of Food Science, 57, 506-511.