Document Type: Original Article


1 Department of Chemistry, State University of Ceara, Avenida Silas Munguba, Campus do Itaperi, CEP 60741-000 Fortaleza, CE, Brazil.

2 Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, CEP 60511-110 Fortaleza, CE, Brazil.

3 Department of Biochemistry and Molecular Biology, Federal University of Ceara, Campus do Pici, CEP 60440-554, Fortaleza, CE, Brazil.

4 Department of Food Technology, Federal University of Ceara, Campus do Pici, CEP 60440-554, Fortaleza, CE, Brazil.

5 Department of Biochemistry and Molecular Biology, Federal University of Ceara, Campus do Pici, CEP 60440-554, Fortaleza, CE, Brazil


Purpose: The objective of this work was to evaluate the effects of two systems of cultivation on the banana crop (Musa spp.) in the postharvest quality, bioactive compounds and phenylalanine ammonia-lyase during ripening process. Research method: Changes in physicochemical parameters, non-antioxidant, phenylalanine ammonia lyase (PAL) activity and oxidative markers were evaluated in banana cv. Prata-Anã from organic and conventional systems at three ripening stages: unripe, breaker and ripe. Main findings: The weight of conventional fruit was 48% greater at the ripe stage. The fruit size was reduced in fruits from organic farming while titratable acidity and the soluble solids content were respectively 82% and 58% higher at breaker stage in conventional bananas. The organic bananas have an increase of 58% in the phenolics at the unripe stage. The PAL activity was observed throughout banana development from organic farming, however the same was not observed for the conventional farming. Dismutase superoxide activity was also dramatically higher in matures and ripe fruits from organic farming. The lipid peroxidation degree of the cell membrane was 40% higher in ripe bananas for both systems. Research limitations: No limitations were founded, since the methods were well established. Originality/Value: Our observations suggest that banana fruits presented little changes in the function of farming conditions with an accumulation of specific compounds in determined stages of ripening without remarkable difference among systems of cultivation.


Main Subjects

Alkarkhi, A.F.M., Bin-Ramli, S., Yong, Y.S., & Easa. (2011). Comparing physicochemical properties of banana pulp and peel flours prepared from green and ripe fruits. Food Chemistry, 129, 312-318. doi: 10.1016/j.foodchem.2011.04.060

Asami, D.K., Hong, Y.J., Barrett, D.M., & Mitchell, & A.E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51, 1237-1241. doi: 10.1021/jf020635c

Association of Official Analytical Chemistry-AOAC. (2005). Official Methods of Analysis of AOAC International.

Barański, M., Średnicka-Tober, D., Volakakis, N., Seal, C., Sanderson, R., Stewart, G.B., Benbrook, C., Biavati, B., Markellou, E., & Giotis, C. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. British Journal of Nutrition, 112, 794-811. doi: 10.1017/S0007114514001366

Beers, R.F. & Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry, 195, 133-140.

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. doi: 10.1016/0003-2697(76)90527-3

Brandt, K., Leifert, C., Sanderson, R., & Seal, C.J. (2011). Agroecosystem management and nutritional quality of plant foods: the case of organic fruits and vegetables. Critical Reviews in Plant Science, 30 (1-2), 177-197. doi: 10.1080/07352689.2011.554417

Cardoso, P.C., Tomazini, A.P.B., Stringheta, P.C., Ribeiro, S.M., & Pinheiro-Sant’Ana, H.M. (2011). Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food Chemistry, 126, 411-416. doi: 10.1016/j.foodchem.2010.10.109

Chang, A., Lim, M-H., Lee, S-W., Robb, E.J., & Nazar, R.N. (2008). Tomato phenylalanine ammonia-lyase gene family, highly redundant but strongly underutilized. The Journal of Biological Chemistry, 283, 33591-33601. doi: 10.1074/jbc.M804428200

Dangour, A.D., Dodhia, S.K., Hayter, A., Allen, E., Lock, K., & Uauy, R. (2009). Nutritional quality of organic foods: a systematic review. The American Journal of Clinical Nutrition, 90, 680-685. doi: 10.3945/ajcn.2009.28041

Davey, M.W., Stals, E., Ngoh-Newilah, G., Tomekpe, K., Lusty, C., Markham, R., Swennen, R., & Keulemans, J. (2007). Sampling strategies and variability in fruit pulp micronutrient contents of West and Central African bananas and plantains (Musa species). Journal of Agricultural and Food Chemistry, 55, 2633-2644. doi:10.1021/jf063119l

Deshmukh, S., Wadegaonkar, V., Bhagat, R., & Wadegaonkar, P. (2011). Tissue specific expression of Anthraquinones, flavonoids and phenolics in leaf, fruit and root suspension cultures of Indian Mulberry (Morinda citrifola L.). Plant Omics, 4, 6.

El-Mergawi, R.A. & Al-Redhaiman, K. (2010). Effect of organic and conventional production practices on antioxidant activity, antioxidant constituents and nutritional value of tomatoes and carrots in Saudi Arabia markets. Journal of Food, Agriculture and Environment, 8, 253-258.

El-Shora, H. (2002). Properties of phenylalanine ammonia-lyase from marrow cotyledons. Plant Science, 162, 1-7. doi: 10.1016/S0168-9452(01)00471-X

Faller, A. & Fialho, E. (2010). Polyphenol content and antioxidant capacity in organic and conventional plant foods. Journal of Food Composition and Analysis, 23, 561-568. doi: 10.1016/j.jfca.2010.01.003

Fardet, A., Rock, E., & Rémésy, C. (2008). Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? Journal of Cereal Science, 48, 258-276. doi: 10.1016/j.jcs.2008.01.002

Ferreira, S.M.R., Quadros, D.A., Karkle, E.N.L., Lima, J.J., Tullio, L.T., & Freitas, R.J.S. (2010). Qualidade pós-colheita do tomate de mesa convencional e orgânico. Ciência e Tecnologia de Alimentos, 30, 858-864.

Francis, F.J. (1982). Analysis of anthocyanins. In Anthocyanins as food colors. Academic Press. 181-207. doi: 10.1016/j.foodchem.2003.08.011

Giannopolitis, C.N. & Ries, S.K. (1977). Superoxide dismutase In. Occurrence in higher plants. Plant Physiology, 59, 309-314. doi: 10.1104/pp.59.2.309

Gil, M.I, Ferreres, F. & Tomas-Barberan, F. (1999). A. Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and vitamin C) of fresh-cut spinach. Journal of Agricultural and Food Chemistry, 47, 2213-2217. doi: 10.1021/jf981200l

Hernández, Y., Lobo, M.G., & González, M. (2006). Determination of vitamin C in tropical fruits: A comparative evaluation of methods. Food Chemistry, 96, 654-664. doi: 0.1016/j.foodchem.2005.04.012

Holb, I.J., Dremák, P., Bitskey, K. & Gonda, I. (2012). Yield response, pest damage and fruit quality parameters of scab-resistant and scab-susceptible apple cultivars in integrated and organic production systems. Scientia  Horticulturae, 145, 109-117. doi: 10.1016/j.scienta.2012.08.003

Howard, L.R., Pandjaitan, N., Morelock, T., & Gil, M.I. (2002). Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. Journal of Agricultural and Food Chemistry, 50, 5891-5896. doi: 10.1021/jf020507o

Jin, P., Wang, S.Y., Wang, C.Y., & Zheng, Y. (2011). Effect of cultural system and storage temperature on antioxidant capacity and phenolic compounds in strawberries. Food Chemistry, 124, 262-270. doi: 1016/j.foodchem.2010.06.029

Kader, A.A. (2002). Postharvest technology of horticultural crops: UCANR Publications. In: Lima, G.P.P., Vianello, F., 2011. Review on the main differences between organic and conventional plant-based foods. International Journal of Food Science and Technology, 46, 1-13.

Kováčik, J., Grúz, J., Klejdus, B., Štork, F., Marchiosi, R., & Ferrarese-Filho, O. (2010). Lignification and related parameters in copper-exposed Matricaria chamomilla roots: role of H2O2 and NO in this process. Plant science, 179(4), 383-389.

Larrauri, J.A., Rupérez, P., & Saura-Calixto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, 45, 1390-1393. doi: 10.1021/jf960282f

Lester, G.E. & Saftner, R.A. (2011). Organically versus conventionally grown produce: common production inputs, nutritional quality, and nitrogen delivery between the two systems. Journal of Agricultural and Food Chemistry, 59, 10401-10406.doi: 10.1021/jf202385x

Lim, Y., Lim, T., & Tee, J. (2007). Antioxidant properties of several tropical fruits: A comparative study. Food Chemistry, 103, 1003-1008. doi: 10.1016/j.foodchem.2006.08.038

Mohapatra, D., Mishra, S., Singh, C.B., & Jayas, D.S. (2011). Post-harvest processing of banana: opportunities and challenges. Food Bioprocess and Technology, 4, 327-339. doi: 10.1007/s11947-010-0377-6

Moore, J., Liu, J-G., Zhou, K., & Yu, L. (2006). Effects of genotype and environment on the antioxidant properties of hard winter wheat bran. Journal of Agricultural and Food Chemistry, 54, 5313-5322. doi: 10.1021/jf060381l

Mori, T., Sakurai, M. & Sakuta, M. (2001). Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Science, 160, 355-360. doi: 10.1016/S0168-9452(00)00399-X

Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22, 867-880. doi:  10.1093/oxfordjournals.pcp.a076232

Neta, M.N.A., Araújo, F.D., Rabelo, J.M., Almeida, T.S., & Cunha, L.M.V. (2016). Análise dos custos de produção de bananicultura orgânica com selo SAT-sem o uso de agrotóxico no norte de Minas Gerais. Cadernos de Agroecologia, 1-10.

Obanda, M., Owuor, P.O., & Taylor, S.J. (1997). Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. Journal of Food the Science of Food and Agriculture, 74, 209-215. doi: 10.1002/(SICI)1097

Oliveira, A.B., Lopes, M.M.A., Moura, C.F.H., Oliveira, L.S., Souza, K.O., Gomes-Filho, E., Urban, L., & Miranda, M.R.A. (2017). Effects of organic vs. conventional farming systems on quality and antioxidant metabolism of passion fruit during maturation. Scientia Horticulturae, 222, 84-89.doi: 10.1016/j.scienta.2017.05.021

Oliveira, A.B., Moura, C.F., Gomes-Filho, E., Marco, C.A., Urban, L., & Miranda, M.R.A. (2013). The impact of organic farming on quality of tomatoes is associated to increased oxidative stress during fruit development. Plos One, 8, e56354. doi: 10.1371/journal.pone.0056354

Passos, F.R., Mendes, F.Q., Cunha, M.C.D., Pigozzi, M.T., & Carvalho, A.M.X.D. (2016). Propolis extract in postharvest conservation banana ‘prata’. Revista Brasileira de Fruticultura, 38, 2. doi: 10.1590/0100-29452016931.

Peck, G.M., Merwin, I.A., Thies, J.E., Schindelbeck, R.R., & Brown, M.G. (2011). Soil properties change during the transition to integrated and organic apple production in a New York orchard. Applied Soil Ecology, 48, 18-30. doi: 10.1016/j.apsoil.2011.02.008

Pimentel, R.A., Guimarães, F.N., Santos, V., & Resende, J. (2010). Qualidade pós-colheita dos genótipos de banana PA42-44 e Prata-Anã cultivados no norte de Minas Gerais. Revista Brasileira de Fruticultura, 32, 407-413.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231-1237. doi: 1016/S0891-5849(98)00315-3

Silva, A.A., Junior, J.L.B., & Barbosa, M.I.M.J. (2015). Farinha de banana verde como ingrediente funcional em produtos alimentícios. Ciência Rural, 45, 2252-2258. doi: 10.1590/0103-478cr20140332

Singh, B., Singh, J.P., Kaur, A., & Singh, N. (2016). Bioactive compounds in banana and their associated health benefits-A review. Food Chemistry, 206, 1-11. doi: 10.1016/j.foodchem.2016.03.033

Smith-Spangler, C., Brandeau, M.L., Hunter, G.E., Bavinger, J.C., Pearson, M., Eschbach, P.J., Sundaram, V., Liu, H., Schirmer, P., Stave, C., Olkin, I., & Bravata, D.M. (2012). Are organic foods safer or healthier than conventional alternatives? A systematic review. Annals of Internal Medicine, 157, 348-366. doi: 10.7326/0003-4819-157-5-201209040-00007

Someya, S., Yoshiki, Y., & Okubo, K. (2002). Antioxidant compounds from bananas (Musa cavendish). Food Chemistry, 79, 351-354. doi: 10.1016/S0308-8146(02)00186-3

Thaiphanit, S. & Anprung, P. (2010). Physicochemical and flavor changes of fragrant banana (Musa acuminata AAA group ‘Gross Michel’) during ripening. Journal of Food Processing and Preservation, 34, 366-382. doi: 10.1111/j.1745-4549.2008.00314.x

Vallverdú-Queralt, A., Jáuregui, O., Medina-Remón, A., & Lamuela-Raventós, R.M. (2012). Evaluation of a method to characterize the phenolic profile of organic and conventional tomatoes. Journal of Agricultural and Food Chemistry, 60, 3373-3380. doi: 10.1021/jf204702f

Vinha, A.F., Barreira, S.V., Costa, A.S., Alves, R.C., & Oliveira, M.B.P. (2014). Organic versus conventional tomatoes: Influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food Chemistry and Toxicology, 67, 139-144. doi: 10.1016/j.fct.2014.02.018

Wall, M.M. (2006). Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. Journal of Food Composition and Analysis, 19, 434-445. doi: 10.1016/j.jfca.2006.01.002

Yang, Z., Zheng, Y., & Cao, S. (2008). Effect of high oxygen atmosphere storage on quality, antioxidant enzymes, and DPPH-radical scavenging activity of Chinese bayberry fruit. Journal of Agricultural and Food Chemistry, 57, 176-181. doi: 10.1021/jf803007j

Zhu, S., Sun, L., Liu, M., & Zhou, J. (2008). Effect of nitric oxide on reactive oxygen species and antioxidant enzymes in kiwifruit during storage. Journal of the Science of Food and Agriculture, 88, 2324-2331. doi: /10.1002/jsfa.3353