Document Type : Original Article


1 Research Unit on Agrobiodiversity (UR13AGR05), Department of Horticultural Sciences, Higher Agronomic Institute, IRESA-University of Sousse, 4042 Chott-Mariem, Sousse, Tunisia.

2 Regional Research Centre on Horticulture and Organic Agriculture (CRRHAB)


Purpose: In Tunisia, pear cultivars are widely threatened by the attack of fire blight disease. Cultivation of tolerant cultivars is an effective control strategy for disease control. For this purpose, a reliable protocol was established for micropropagation of local Pyrus communis and Pyrus syriaca L. and for large-scale production of high-quality plantlets. Research method: Using apical explants, different media and hormones were tested to establish a micropropagation procedure for local Tunisian Pyrus communis cultivars ‘Arbi’, ʻMaltiʼ, ʻMahdia 6ʼ and ʻMoknine 10ʼ and for Pyrus syriaca. Disinfection with 4% HgCl2 treatment for 20 minutes showed the highest percentage of plant survival. Successful initiation of the cultures was achieved on MS basal medium supplemented with 0.25 mg L-1 BA. Findings: During the proliferation stage, optimal shoot multiplication was obtained on MS medium with a half concentration of NH4NO3 and KNO3 supplemented with 0.1 mg L-1 IBA and 2 mg L-1 BA, but for maximum shoot length the BA concentration needed to be lowered to 1 mg L-1. A rooting rate of 100% and the highest root length and root number were attained on Cheng medium supplemented with 1.0 mg L-1 IBA. Pear vitroplants were successfully acclimatized on S2 substrate, composed by peat moss. Research limitations: Vitroplants acclimatization step needs to be well studied for the improvement of theacclimatized vitroplant survival rates by reducing the symptoms of crown rot. Originality/Value: This efficient optimized in vitro protocol will be successfully applied for large multiplication of high quality of Tunisian Pyrus vitroplants and cultivars.


Main Subjects

Al-Maarri, K., Arnaud, Y., & Miginiac, E. (1994). Micropropagation of Pyrus communis cultivar ‘Passe Crassane’ seedlings and cultivar ‘Williams’: factors affecting root formation in vitro and ex vitro. Scientia Horticulturae, 58, 207-214.

Assareh, M.H., & Sardabi, H. (2005). Macropropagation and micropropagation of Ziziphus spina-christi. Pesquisa Agropecuaria Brasileira, 40, 459-465.

Ayed, C., Bayoudh, C., Rhimi, A., Mezghani, N., Haouala, F., & Al Mohandes Dridi, B. (2018). In vitro propagation of Tunisian local garlic (Allium sativum L.) from shoot-tip culture. Journal of Horticulture and Postharvest Research, 1(2), 75-86.

Aygun, A., & Dumanoglu, H. (2015). In vitro shoot proliferation and in vitro and ex vitro root formation of Pyrus elaeagrifolia Pallas. Frontiers in Plant Science, 6, 225.

Bahmani, R., Karami, O., & Gholami, M. (2009). Influence of carbon sources and their concentrations on rooting and hyperhydricity of apple rootstock MM106. World Applied Sciences Journal, 6, 1513-1517.

Bahri-Sahloul, R., Mtar, R., Msallem, A., & Ammar, S. (2005). Micropropagation of three "Pyrus" rootstocks. Advances in Horticultural Science, 19, 1000-1008.

Brini, W., Mars, M., & Hormaza, I. (2008). Genetic diversity in local Tunisian pears (Pyrus communis L.) studied with SSR markers. Scientia Horticulturae, 115, 337-341.

Cheng, T.V. (1979). Micropropagation of clonal fruit tree rootstocks. Compact Fruit Trees, 12, 127-137.

Dimitrova, N., Nacheva, L., & Berova, M. (2016). Effect of meta-topolin on the shoot multiplication of pear rootstock OHF-333 (Pyrus communis L.). Hortorum Cultus-Acta Scientiarum Polonorum15, 43-53.

Gaaliche, B., Chehimi, S., Dardouri, S., & Hajlaoui, M.R. (2018). Health status of the pear tree following the establishment of Fire blight in Northern Tunisia. International Journal of Fruit Science, 18, 85-98.

Hassan, S.A.M., & Zayed, S.N. (2018). Factor controlling micropropagation of fruit trees: A review. Science International, 6, 1-10.

Karimpour, S., Davarynejad, G.H., Bagheri, A., & Tehranifar, A. (2013). In vitro establishment and clonal propagation of Sebri pear cultivar. Journal of Agricultural Sciences and Technology, 15, 1209-1217.

Leite, G.B., Finardi, N.L., & Fortes, G.R.L. (1997). The effect of BAP and NAA concentration on multiplication “in vitro” of pears cv. Bartlett and clone OH × F 97. Ciencia-e-Agrotecnologia, 21, 436-441.

Lizarraga, A., Fraga, M., Ascasibar, J., & Gonzalez, M.L. (2017). In Vitro propagation and recovery of eight apple and two pear cultivars held in a germplasm bank. American Journal of Plant Sciences, 8, 2238-2254.

Lotfi, M., Mars, M., & Stefaan, W. (2019). Optimizing pear micropropagation and rooting with light emitting diodes and trans-cinnamic acid. Plant Growth Regulation. 1-8.

Mamaghani, A.B., Ghorbanli, M., Assareh, M.H., & Ghamari, Z.A. (2010). In vitro propagation of three Damask Roses accessions. Iranian Journal of Plant Physiology, 1, 85-94.

Mars, M., Carraut, A., Marrakchi, M., Gouiaa, M., & Gaaliche F. (1994). Ressources génétiques fruitières en Tunisie (poirier, oranger, figuier, grenadier). Plant Genetic Ressources Newsletter, 100, 14-17.

Mihaljevic, I., Dugalic, K., Tomas,V., Viljevac, M., Pranjic, A., Cmelik, Z., Puskar,B., & Jurkovic, Z. (2013). In vitro sterilization procedures for micropropagation of ‘Oblacinska’ sour cherry. Journal of Agricultural Sciences, Belgrade, 58, 117-126.

Moncousin, C. (2012). Rooting of in vitro cuttings. In High-tech and micropropagation I (17). (Bajaj Y.P ed.). Springer Science & Business Media, Berlin, 231-261.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.

Nacheva, L.R., Gercheva, P.S., & Dzhuvinov, V.T. (2009). Efficient shoot regeneration system of pear rootstock OHF 333 (Pyrus communis L.) leaves. Acta Horticulturae, 839, 195-201.

Qin, J., Wang, Y., He, G., Chen, L., He, H., Cheng, X., Xu, K., & Zhang, D. (2017). High-efficiency micropropagation of dormant buds in spine base of red pitaya (Hylocereus polyrhizus) for industrial breeding. International Journal of Agriculture and Biology, 19, 193-198.

Reed, B.M., Wada, S., De Noma, J., & Niedz, R.P. (2013). Mineral nutrition influences physiological responses of pear in vitro. In Vitro Cellular & Developmental Biology - Plant, 49, 699-709.

Reed, B.M. (1995). Screening Pyrus germplasm for in vitro rooting response. HortScience, 30, 1292-1294.

Rhouma, A., Helali, F., Chattaoui, M., Hajjouji, M., & Hajlaoui, M.R. (2013). First report of fire blight caused by Erwinia amylovora on pear in Tunisia. Plant Disease, 98, 158.

Sakharam, N.P., Rameshwar, A.P., & Bhagyashree, B.A. (2017). Effect of different concentrations of IBA in combination with BA on biomass yield of Bacopa monnieri (Brahmi). International Journal of Current Microbiology and Applied Sciences, 6, 3301-3306.

Sharma, T., Modgil, M., & Thakur, M. (2007). Factors affecting induction and development of in vitro rooting in apple rootstocks. Indian Journal of Experimental Biology, 45, 824- 29.

Sharma, Y.P., & Pramanick, K.K. (2012). Utilization of plant genetic resources for the improvement of temperate fruit crops. Indian Journal of Genetics and Plant Breeding, 72, 130-135.

Shibli, R.A., Ajlouni, M.M., Jaradat, A., Aljanabi, S., & Shatanawi, M. (1997). Micropropagation of wild pear (Pyrus syriaca). Scientia Hortuculturae, 68, 237-242.

Thakur, A., & Kanwar, J.S. (2008). Micropropagation of "Wild pear" Pyrus pyrifolia (Burm F.) Nakai. II. Induction of Rooting. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 36, 104-111.

Xia, L., Xuejiao, L., Wang, T., & Gao, W. (2016). Nutritional composition of pear cultivars (Pyrus spp.). In Nutritional Composition of Fruit Cultivars (Preedy V.R. & Simmonds M.S.J. ed.). Elsevier, USA, 573-608.

Yeo, D.Y., & Reed, B.M. (1995). Micropropagation of three Pyrus rootstocks. HortScience, 30, 620-623.

Zheng, X., Cai, D., Potter, D., Postman, J., Liu, J., & Teng, Y. (2014). Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences. Molecular Phylogenetics and Evolution80, 54-65.