Avaei, A., Mohamadi Sani, A., & Mahmoodzadeh Vaziri, B. (2015). Chemical composition and antimicrobial effect of the essential oil of
Zataria multifloraBoiss endemic in Khorasan-Iran.
AsianPacific.
Journal of Tropical Disease,
5(3), 181-185. http://dx.doi.org/
10.1016/S2222-1808(14)60649-6
Bacchella, R., Testoni, A., & Lo Scalzo, A. (2009). Influence of genetic and environmental factors on chemical profile and antioxidant potential of 84 commercial Strawberry (
Fragaria ×
ananassa Duchesne).
Electronical Journal of environmental, Agricultural and Food Chemistry,
8(4), 230-242. http://dx.doi.org/
10.1016/j.jhazmat.2015.10.026.
Bunjes, H. (2005). Characterization of solid lipid nano- and microparticles. in: lipospheres in drug targets and delivery. Edited by Nastruzzi C, pp: 41-66. Florida: CRC press.
Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods.
International Journal of Food Microbiology,
94, 223-253. http://dx.doi.org/
10.1016/j.ijfoodmicro.2004.03.022.
Domb, A.J. (1993). Lipospheres for controlled delivery of substances. In: microencapsulation: methods and industrial applications. Ed. Benita, S. 2th ed, 158, pp.188-836. USA: CRC Press.
Donsi, F., Annunziata, M., Sessa, M., & Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods.
Food Science and Technology, 1908-1914. http://dx.doi.org/
10.1016/j.lwt.2011.03.003.
Ekambaram, P., Abdul Hasan Sathali, A., & Priyanka, K. (2011). Solid lipid nanoparticles: a review. Scientific Reviews & Chemical Communications Journal, 2(1):80-102. http://dx.doi.org/10.20959/wjpr20165-6066.
Es’haghi Gorjim M., Noori, N., Nabizadeh Nodehi, R., Jahed Khaniki, G., Noushin Rastkari & Alimohammadi, M. (2014). The evaluation of Zataria multiflora boiss. essential oil effect on biogenic amines formation and microbiological profile in Gouda cheese.
Letters in Applied Microbiology, 59, 621-630. http://dx.doi.org/
10.1111/lam.12319.
Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems.
Trends Food Science & Technology. 23, 13-27. http://dx.doi.org/
10.1016/j.tifs.2011.08.003.
Golmohammadzadeh, S., Mokhtari, M., & Jaafari, M. R. (2012). Preparation, characterization and evaluation of moisturizing and UV protecting effects of topical solid lipid nanoparticles. Brazilian Journal of Pharmaceutical Sciences, 48(4), 683-690.
Jores, K., Mehnerta, W., Drechslerb, M., Bunjesc, H., Johannd, C. & Mäder, K. (2004). Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy.
Journal of Controlled Release,
9, 217-227. http://dx.doi.org/
10.1016/j.jconrel.2003.11.012.
Lai, F., Wissing, S. A., Müller, R. H., & Fadda, A. M. (2006). Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. Aaps Pharmscitech, 7(1), E10.
Mader, K., & Mehnert, W. (2005). Solid lipid nanoparticles-concepts, procedures and physicochemical aspects. In: Lipospheres in drug targets and delivery. Ed. Nastruzzi, C. Florida: CRC press, 1-22.
Moghimipour, E., Ramezani, Z., & Handali, S. ( 2013). Solid lipid nanoparticles as a delivery system for
Zataria multiflora essential oil: formulation and characterization.
Current Drug Delivery,
10, 151-157. http://dx.doi.org/
10.2174/1567201811310020001.
Nasseri, M., Arouiee, H.,Golmohammadzadeh, S.,Jaafari, M.R., & Neamati, H. (2015.) Antifungal effects of Zataria multiflora essential oil on the inhibitory growth of some postharvest pathogenic fungi. Notulae Scientia Biologicae, 7(4), 412-416. http://dx.doi.org/10.15835/nsb749650.
Pérez-de-Luque, A., & Rubiales, D. (2009). Nanotechnology for parasitic plant control. Pest Management Science, 65, 540-545. http://dx.doi.org/10.1002/ps.1732.
Pizzol, C.D., Filippin-Monteiro, F.B., Restrepo, J.A.S., Pittella, F., Silva, A.H., Souza, P.A., Campos, A.M., & Creczynski-Pasa, T.B. (2014). Influence of surfactant and lipid type on the physicochemical propertiesand biocompatibility of solid lipid nanoparticles. International Journal of Environmental Research and Public Health, 11, 8581-8596. http://dx.doi.org/10.3390/ijerph110808581.
Plotto, A., Roberts, R.G., & Roberts, D.D. (2003). Evaluation of plant essential oils as natural postharvest disease control of Tomato (
Lycopersicon esculentum).
Acta Horticulture, 628: 737 - 745
.doi doi.org/10.17660/ActaHortic.2003.628.93.
Schäfer-Korting, M., & Mehnert, W. (2005). Delivery of Lipophilic Compounds with LipidNanoparticles-Applications in Dermatics and for Transdermal Therapy. In: Lipospheres in drug targets and delivery: approaches, methods, and applications. Ed. Nastruzzi, C., 1st ed. pp. 128-139. London: CRC Press.
Shi, F., Zhao, J., Liu, Y., Wang, Z., Zhang, Y. & Feng, N. (2012). Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil.
International Journal of Nanomedicine,
7, 2033–2043. http://dx.doi.org/
10.2147/IJN.S30085.
Wang, L., Liu, L., Kerry, J. F., & Kerry, J. P. (2007). Assessment of film-forming potential andproperties of protein and polysaccharide-based biopolymer films.
International Journal of Food Science and Technology,
42, 1128-1138. http://dx.doi.org/
10.1111/j.1365-2621.2006.01440.
Wissing, S.A., & Muller, R.H. (2002). The influence of the crystallinity of lipid57- nanoparticles on their occlusive properties.
International Journal Pharmaceutical,
242, 377-379. http://dx.doi.org/
10.1016/S0378-5173(02)00220-X.
Wissing, S.A., Kayser, O., & Muller, R.H. (2004). Solid lipid nanoparticles for parenteral drug delivery.
Advanced Drug Delivery Reviews,
56(9), 1257-1272. http://dx.doi.org/
10.1016/j.addr.2003.12.002.