Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves.
Australian Journal of Biological Sciences,
15(3), 413-428.
https://doi.org/10.1071/BI9620413
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies.
Plant and Soil,
39(1), 205-207.
https://doi.org/10.1007/BF00018060
Brown, P. H., & Hu, H. (1996). Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species.
Annals of Botany,
77(5), 497-506.
https://doi.org/10.1006/anbo.1996.0060
Cave, G., Tolley, L. C., & Strain, B. R. (1981). Effect of carbon dioxide enrichment on chlorophyll content, starch content and starch grain structure in
Trifolium subterraneum leaves.
Physiologia Plantarum,
51(2), 171-174.
https://doi.org/10.1111/j.1399-3054.1981.tb02694.x
Feigin, A., Ravina, I., & Shalhevet, J. (2012). Irrigation with treated sewage effluent: Management for Environmental Protection (Vol. 17). Springer Science & Business Media.
Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.
Biochimica et Biophysica Acta (BBA)-General Subjects,
990(1), 87-92.
https://doi.org/10.1016/S0304-4165(89)80016-9
Goldberg, S., Shouse, P. J., Lesch, S. M., Grieve, C. M., Poss, J. A., Forster, H. S., & Suarez, D. L. (2003). Effect of high boron application on boron content and growth of melons.
Plant and Soil,
256(2), 403-411.
https://doi.org/10.1023/A:1026186311974
Guidi, L., Degl’Innocenti, E., Carmassi, G., Massa, D., & Pardossi, A. (2011). Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water.
Environmental and Experimental Botany,
73, 57-63.
https://doi.org/10.1016/j.envexpbot.2010.09.017
Han, S., Tang, N., Jiang, H. X., Yang, L. T., Li, Y., & Chen, L. S. (2009). CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress.
Plant Science,
176(1), 143-153.
https://doi.org/10.1016/j.plantsci.2008.10.004
Herms, D. A., & Mattson, W. J. (1992). The dilemma of plants: to grow or defend.
The Quarterly Review of Biology,
67(3), 283-335.
https://doi.org/10.1086/417659
Irigoyen, J. J., Einerich, D. W., & Sánchez-Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (
Medicago sativd) plants.
Physiologia Plantarum,
84(1), 55-60.
https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
Landi, M., Pardossi, A., Remorini, D., & Guidi, L. (2013). Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (
Ocimum basilicum) to boron excess.
Environmental and Experimental Botany,
85, 64-75.
https://doi.org/10.1016/j.envexpbot.2012.08.008
Lutts, S., Kinet, J. M., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (
Oryza sativa L.) varieties differing in salinity resistance.
Journal of Experimental Botany,
46(12), 1843-1852.
https://doi.org/10.1093/jxb/46.12.1843
Makkar, H. P., Blümmel, M., Borowy, N. K., & Becker, K. (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods.
Journal of the Science of Food and Agriculture,
61(2), 161-165.
https://doi.org/10.1002/jsfa.2740610205
Mihajilov-Krstev, T., Radnović, D., Kitić, D., Stojanović-Radić, Z., & Zlatković, B. (2010). Antimicrobial activity of
Satureja hortensis L. essential oil against pathogenic microbial strains.
Archives of Biological Sciences, 62(1), 159-166.
https://doi.org/10.2298/ABS1001159M
Mullen, W., Marks, S. C., & Crozier, A. (2007). Evaluation of phenolic compounds in commercial fruit juices and fruit drinks.
Journal of Agricultural and Food Chemistry,
55(8), 3148-3157.
https://doi.org/10.1021/jf062970x
Muntean, D. W. (2015). Boron, the overlooked essential element. Bellevue: Soil and Plant Laboratory Inc.
Nalini Pandey, A. (2013). Antioxidant responses and water status in Brassica seedlings subjected to boron stress. Acta Physiologiae Plantarum, 35(3), 697-706.
Paparnakis, A., Chatzissavvidis, C., & Antoniadis, V. (2013). How apple responds to boron excess in acidic and limed soil. Journal of Soil Science and Plant Nutrition, 7, 787-796.
Powell, R. L., Kimerle, R. A., Coyle, G. T., & Best, G. R. (1997). Ecological risk assessment of a wetland exposed to boron. Environmental Toxicology and Chemistry, 16(11), 2409-2414.
Princi, M. P., Lupini, A., Araniti, F., Sunseri, F., & Abenavoli, M. R. (2013). Short-term effects of boron excess on root morphological and functional traits in tomato. In: XVII International Plant Nutrition Colloquium- Boron Satellite Meeting–Proceedings Book–17–18 August 2013. Istanbul, Turkey, pp. 1150-1151.
Reid, R. J., Hayes, J. E., Post, A., Stangoulis, J. C. R., & Graham, R. D. (2004). A critical analysis of the causes of boron toxicity in plants.
Plant, Cell & Environment,
27(11), 1405-1414.
https://doi.org/10.1111/j.1365-3040.2004.01243.x
Rozema, J., van de Staaij, J., Björn, L. O., & Caldwell, M. (1997). UV-B as an environmental factor in plant life: stress and regulation.
Trends in Ecology & Evolution,
12(1), 22-28.
https://doi.org/10.1016/S0169-5347(96)10062-8
Saini, R. S., Sharme, K. D., Dhankhar, O. P., & Kaushik, R. A. (2001). Laboratory Manual of Analytical Techniques in Horticulture. Published by Agrobois: India, pp. 49-50.
Sarafi, S., Siomos, A., Tsouvaltzis, P., Chatzissavvidis, Ch., & Therios, I. 2017. Boron toxicity effects on grafted and non-grafted pepper (Capsicum annuum) plants. Journal of Soil Science and Plant Nutrition, 17(2), 441-460.
Šetlík, I., Allakhverdiev, S. I., Nedbal, L., Šetlíková, E., & Klimov, V. V. (1990). Three types of photosystem II photoinactivation.
Photosynthesis Research,
23(1), 39-48.
https://doi.org/10.1007/BF00030061
Shah, A., Wu, X., Ullah, A., Fahad, S., Muhammad, R., Yan, L., & Jiang, C. 2017. Deficiency and toxicity of boron: Alterations in growth, oxidative damage and uptake by citrange orange plants.
Ecotoxicology and Environmental Safety, 145, 575-582.
Sharp, R. E., & LeNoble, M. E. (2002). ABA, ethylene and the control of shoot and root growth under water stress.
Journal of Experimental Botany,
53(366), 33-37.
https://doi.org/10.1093/jexbot/53.366.33
Šilić, Č. (1979). Monografija rodova Satureja L., Calamintha miller, Micromeria bentham, Acinos miller I clinopodium L. Flora Jugoslavije. Zemaljski Muzej BiH, Sarajevo.
Simón-Grao, S.,
Nieves, M.,
Martínez-Nicolás, J. J.,
Cámara-Zapata, J.M.,
Alfosea-Simón, M., &
García-Sánchez, F. (2018). Response of three citrus genotypes used as rootstocks grown under boron excess conditions.
Ecotoxicology and Environmental Safety, 15, 159:10-19
Sonmez, O., Aydemir, S., & Kaya, C. (2009). Mitigation effects of mycorrhiza on boron toxicity in wheat (
Triticum durum) plants.
New Zealand Journal of Crop and Horticultural Science,
37(2), 99-104.
https://doi.org/10.1080/01140670909510254
Tanaka, M., & Fujiwara, T. (2008). Physiological roles and transport mechanisms of boron: perspectives from plants.
Archiv-European Journal of Physiology, 456(4), 671-677.
https://doi.org/10.1007/s00424-007-0370-8
Yermiyahu, U., Ben-Gal, A., Keren, R., & Reid, R. J. (2008). Combined effect of salinity and excess boron on plant growth and yield.
Plant and Soil,
304(1-2), 73-87.
https://doi.org/10.1007/s11104-007-9522-z
Zhang, H. B., & Xu, D. Q. (2003). Role of light-harvesting complex 2 dissociation in protecting the photosystem 2 reaction centres against photodamage in soybean leaves and thylakoids.
Photosynthetica,
41(3), 383-391.
https://doi.org/10.1023/B:PHOT.0000015462.71601.d7