Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus
Fusarium oxysporum. Colloids Surf B: Biointerfaces, 28, 313-318.
https://doi.org/10.1016/s0927-7765(02)00174-1
Ankanna, S., Prasad, T. N. V. K. V., Elumalai, E. K., & Savithramma, N. (2010). Production of biogenic silver nanoparticles using Boswellia Ov Alifoliolata stem bark. Journal of Nanomaterial and Bioscience, 5, 369-372.
Aguilar-Mendez, M. A., Martin-Martinez, E. S., Ortega-Arroyo, L., Cobian-Portillo, G., & Sanchez-Espindola, E. (2011). Synthesis and characterization of silver nanoparticles: Effect on phytopathogen
Colletotrichum gloesporioides.
Journal of Nanoparticle Research,
13, 2525-2532.
https://doi.org/10.1007/s11051-010-0145-6
Biswas, P., & Wu, C. Y. (2005). Nanoparticles and the environment. Journal of Air Waste Manage Association, 55, 708-746.
Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad., A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract.
Biotechnology progress, 22, 577-583.
https://doi.org/10.1021/bp0501423
Chitrani, B. D., Ghazani, A. A., Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.
Nanotechnolgy Letters, 6, 662-668.
https://doi.org/10.1021/nl052396o
De Cremer, K., Mathys, J., Vos, C., Froenicke, L., Michelmore, R. W., & Cammue, B. (2013). RNAseq-based transcriptome analysis of
Lactuca sativa infected by the fungal necrotroph
Botrytis cinerea.
Plant, Cell and Environment,
36(11), 1992-2007.
https://doi.org/10.1111/pce.12106
Dhillon, G. S., Brar, S. K., Kaur, S., & Verma, M. (2012). Green approach for nanoparticle biosynthesis by fungi: current trends and applications.
Critical Review of Biotechnology,
32, 49-73.
https://doi.org/10.3109/07388551.2010.550568
Farooqui, M. A., Chauhan, P. S., Krishnamoorthy, P., & Shai, J. (2010). Extraction of silver nano-particles from the leaf extracts of Clerodendrum inerme. Digest Journal of Nanomaterials and Biostructures, 5, 43-49.
Feldheim, D. L., & Foss, C. A. (2002). Metal nanoparticles: synthesis, characterization and applications. Boca Raton, FL, CRC Press.
Galeano, B., Korff, E., & Nicholson, W.L. (2003). Inactivation of vegetative cells, but not spores, of
Bacillus anthracis,
B. cereus and
B. subtilis on stainless steel surfaces coated with an antimicrobial Silver-and Zinc-containing zeolite formulation.
Applied Environmental Microbiology, 69, 4329-4331.
https://doi.org/10.1128/aem.69.7.4329-4331.2003
Ghosh, S., Patil, S., Ahire, M., Kitture, R., Kale, S., Pardesi, K., Camerta, S., Bellare, J., Dhavale, D. D., Jabgunde, A & Chopade, B. A. (2012).Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine, 7, 483-496.
Gurunathan, S., Kalishwaralal, K., Vaidyanathan R., Deepak, V., Pandian, S. R. K & Muniyandi, J. (2009). Biosynthesis, purification and characterization of silver nanoparticles using
Escherichia coli.
Colloid Surface, 74, 328-335.
https://doi.org/10.1016/j.colsurfb.2009.07.048
Jarvis, W. R. (1977). Botryotinia and botrytis species - Taxonomy, physiology and pathogenicity. A guide to the literature, Monograph no. 14, Ottawa, Research Branch, Canada Department of Agriculture.
Jiang, J., Oberdorster, G., & Biswas, P. (2009). Characterization of size, surface charge and agglomeration state of nanoparticle dispersions for toxicological studies.
Nanoparticle Research,11: 77-89.
https://doi.org/10.1007/s11051-008-9446-4
Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B.I., & Gu, B.M. (2008). Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria.
Small, 4, 746-750.
https://doi.org/10.1002/smll.200700954
Kaler, A., Nankar, R., Bhattacharyya, M. S., & Banerjee, U.C. (2011). Extracellular biosynthesis of silver nanoparticles using aqueous extract of
Candida viswanathii.
Journal of Bionanoscience,
5, 53-8.
https://doi.org/10.1166/jbns.2011.1040
Kasthuri, J., Veerapandian, S., & Rajendiran, N. (2009). Biological synthesis of silver and gold nanoparticles using apiin as reducing agent.
Colloids Surf B Biointerfaces,
68, 55-60.
https://doi.org/10.1016/j.colsurfb.2008.09.021
Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C. (2001). Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science.
Trends Biotechnology, 19, 15-20.
https://doi.org/10.1016/s0167-7799(00)01514-6
Kouvaris, P., Delimitis, A., Zaspalis, V., Papadopoulos, D., Tsipas, S. A., & Michailidis, N. (2012). Green synthesis and characterization of silver nanoparticles produced using
Arbutus undo leaf extract.
Material Letter,
76, 18-20.
https://doi.org/10.1016/j.matlet.2012.02.025
Krishnaraj, C., Jagan, E., Rajasekar, S., Selvakumar, P., Kalaichelvan, P., & Mohan, N. (2010). Synthesis of silver nanoparticles using
Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens.
Colloids Surf B Biointerfaces,
76, 50-56.
https://doi.org/10.1016/j.colsurfb.2009.10.008
Maribel, G. G., Jean, D., & Stephan, G. (2009). Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. International Journal of Chemical and Biological Engineering, 2(3), 104-111.
Mohanpuria, P., Rana, N. K., & Yadav, S.K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications.
Journal of Nanoparticle Research,
10, 507-517.
https://doi.org/10.1007/s11051-007-9275-x
Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., Tyagi, A. K., & Kale, S. P. (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus
T. asperellum.
Nanotechnology, 43-54
https://doi.org/10.1088/0957-4484/19/7/075103
Qiu, L., Yang, H. H., Lei, F., Fan, S. G., Xie, M. H., & Wang, Z. J. (2014). "Studies on the Bacteriostasis of nano-silver on the pathogenic fungus
Botrytis cinerea from Illed plants".
Applied Mechanics and Materials,
65, 352-361.
https://doi.org/10.4028/www.scientific.net/amm.651-653.352
Sahar, M., & Ouda , S. (2014). Antifungal activity of silver and copper nanoparticles on two plant pathogens,
Alternaria alternata and
Botrytis cinerea.
Research Journal of Microbiology, 9,34-42.
https://doi.org/10.3923/jm.2014.34.42
Schaffer, B., Hohenester, U., Trugler, A., & Hofer, F. (2009). High resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy
. Physics Reveiw B, 79, 34-52
https://doi.org/10.1103/physrevb.79.041401
Sepeur, S. 2008. Nanotechnology: Technical Basics and Applications. Hannover: Vincentz. 230 p.
Shahverdi, A. R., Shakibaie, M., Nazari, P. (2011). Basic and practical procedures for microbial synthesis of nanoparticles. In : Rai, M., & Duran, N. editors.
Metal Nanoparticles in Microbiology. Berlin: Springer, 177-97.
https://doi.org/10.1007/978-3-642-18312-6_8
Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., & Yu, C. (2010). Lattice strain control of the activity in dealloyed core-shell fuelcell catalysts.
National Chemistry, 2, 454-460.
https://doi.org/10.1038/nchem.623
Sun, S., Murray, C., Weller, D., Folks, L., & Moser, A. (2000). Monodisperse FePt nanopaarticles and ferromagnetic FePt nanocrystal superlattices.
Science,
287, 1989-1992.
https://doi.org/10.1002/chin.200027244
Tada, H., Teranishi, K., Inubushi, Y., & Ito, S. (2000). Ag nanocluster loading effect on TiO2 photocatalytic reduction of bis (2-dipyridyl)disulfide to 2-mercaptopyridine by H2O. Langmuir,
16 (7), 3304-3309.
https://doi.org/10.1021/la991315z
Yogeswari, R., Sikha, B., Akshya Kumar, O., & Nayak, P. L. (2012). Green synthesis of silver nanoparticles using
Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities.
Journal of Microbiology and Antimicrobials,
4(6), 103-109.
https://doi.org/10.5897/jma11.060
Zhang, L., & van Kan, J. A. L. (2013). Pectin as a barrier and nutrient source for fungal plant pathogens. In F. Kempken (Ed.), A comprehensive treatise on fungi as experimental systems for basic and applied research, 361-365. (The Mycota; No. 11). Heidelberg, Germany. https://doi.org/10.1007/978-3-642-36821-9_14