Arnon-Rips, H., Porat, R., & Poverenov, E. (2019). Enhancement of agricultural produce quality and storability using citral-based edible coatings; the valuable effect of nano-emulsification in a solid-state delivery on fresh-cut melons model.
Food Chemistry, 277, 205-212.
https://doi.org/10.1016/j.foodchem.2018.10.117
Bai, J., Plotto, A., Spotts, R., & Rattanapanone, N. (2011). Ethanol vapor and saprophytic yeast treatments reduce decay and maintain quality of intact and fresh-cut sweet cherries.
Postharvest Biology and Technology, 62(2), 204-212.
https://doi.org/10.1016/j.postharvbio.2011.05.010
Cortez-Vega, W. R., Brose Piotrowicz, I. B., Prentice, C., & Dellinghausen Borges, C. (2014). Influence of different edible coatings in minimally processed pumpkin (Cucurbita moschata Duch). International Food Research Journal, 21(5), 2017-2023.
Engwa, G. A. (2018). Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. In Phytochemicals: source of antioxidants and role in disease prevention, (Toshiki Asao and Md Asaduzzaman eds). IntechOpen, ebook, 49-73. https://doi.org/10.5772/intechopen.76719
Gao, J., Luo, Y., Turner, E., & Zhu, Y. (2017). Mild concentration of ethanol in combination with ascorbic acid inhibits browning and maintains quality of fresh-cut lotus root.
Postharvest Biology and Technology, 128, 169-177.
https://doi.org/10.1016/j.postharvbio.2016.12.002
Gao, J., Zhu, Y., & Luo, F. (2018). Effects of ethanol combined with ascorbic acid and packaging on the inhibition of browning and microbial growth in fresh‐cut Chinese yam.
Food Science and Nutrition, 6(4), 998-1005.
https://doi.org/10.1002/fsn3.647
Garcia, E., Barrett, D. M., & (2002). Preservative treatments for fresh-cut fruits and vegetables. In Fresh-cut fruits and vegetables: science, technology, and market. (Olusola Lamikanra ed). CRC Press.
Halpin, C. (2004). Investigating and manipulating lignin biosynthesis in the postgenomic era. Advances in Botanical Research, 41, 63-106.
Hernández-Muñoz, P., Almenar, E., Ocio, M. J., & Gavara, R. (2006). Effect of calcium dips and chitosan coatings on postharvest life of strawberries (
Fragaria x ananassa).
Postharvest Biology and Technology, 39(3), 247-253.
https://doi.org/10.1016/j.postharvbio.2005.11.006
Homaida, M. A., Yan, S., & Yang, H. (2017). Effects of ethanol treatment on inhibiting fresh-cut sugarcane enzymatic browning and microbial growth.
LWT- Food Science and Technology, 77, 8-14.
https://doi.org/10.1016/j.lwt.2016.10.063
Hu, W., Jiang, A., Tian, M., Liu, C., & Wang, Y. (2010). Effect of ethanol treatment on physiological and quality attributes of fresh‐cut eggplant.
Journal of the Science of Food and Agriculture, 90(8), 1323-1326.
https://doi.org/10.1002/jsfa.3943
Kittur, F., Saroja, N., & Tharanathan, R. (2001). Polysaccharide-based composite coating formulations for shelf-life extension of fresh banana and mango.
European Food Research and Technology, 213(4-5), 306-311.
https://doi.org/10.1007/s002170100363
Kulczynski, B., & Gramza-Michalowska, A. (2019). The Profile of secondary metabolites and other bioactive compounds in
Cucurbita pepo L. and
Cucurbita moschata Pumpkin Cultivars.
Molecules, 24(16).
https://doi.org/10.3390/molecules24162945
Li, M., Li, X., Li, J., Ji, Y., Han, C., Jin, P., & Zheng, Y. (2018). Responses of fresh-cut strawberries to ethanol vapor pretreatment: improved quality maintenance and associated antioxidant metabolism in gene expression and enzyme activity levels.
Journal of Agricultural and Food Chemistry, 66(31), 8382-8390.
https://doi.org/10.1021/acs.jafc.8b02647
Nawirska-Olszańska, A., Biesiada, A., Sokół-Łętowska, A., & Kucharska, A. Z. (2011). Content of bioactive compounds and antioxidant capacity of Pumpkin puree enriched with Japanese quince, cornelian cherry, strawberry and apples. Acta Scientiarum Polonorum Technologia Alimentaria, 10(1), 51-60.
Pareek, S. (2016). Fresh-cut Fruits and Vegetables: Technology, Physiology, and Safety. Taylor & Francis, US & UK: CRC Press.
Pesis, E. (2005). The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration.
Postharvest Biology and Technology, 37(1), 1-19.
https://doi.org/10.1016/j.postharvbio.2005.03.001
Petriccione, M., Mastrobuoni, F., Pasquariello, M. S., Zampella, L., Nobis, E., Capriolo, G., & Scortichini, M. (2015). Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage.
Foods, 4(4), 501-523.
https://doi.org/10.3390/foods4040501
Plotto, A., Bai, J., Narciso, J., Brecht, J., & Baldwin, E. (2006). Ethanol vapor prior to processing extends fresh-cut mango storage by decreasing spoilage, but does not always delay ripening.
Postharvest Biology and Technology, 39(2), 134-145.
https://doi.org/10.1016/j.postharvbio.2005.09.009
Ritenour, M., Mangrich, M., Beaulieu, J., Rab, A., & Saltveit, M. (1997). Ethanol effects on the ripening of climacteric fruit.
Postharvest Biology and Technology, 12(1), 35-42.
https://doi.org/10.1016/S0925-5214(97)00031-8
Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods. Washington (Vol. 71): ILSI Press.
Romanazzi, G., Feliziani, E., Baños, S. B., & Sivakumar, D. (2017). Shelf life extension of fresh fruit and vegetables by chitosan treatment.
Critical Reviews in Food Science and Nutrition, 57(3), 579-601.
https://doi.org/10.1080/10408398.2014.900474
Roos, Y. H., & Drusch, S. (2015). Phase transitions in foods. Academic Press.
Şahin, S., & Şamlı, R. (2013). Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology.
Ultrasonics Sonochemistry, 20(1), 595-602.
https://doi.org/10.1016/j.ultsonch.2012.07.029
Santos, A. R., Da Silva, A. F., Amaral, V. C., Ribeiro, A. B., de Abreu Filho, B. A., & Mikcha, J. M. (2016). Application of edible coating with starch and carvacrol in minimally processed pumpkin.
Journal of Food Science and Technology, 53(4), 1975-1983.
https://doi.org/10.1007/s13197-016-2171-6
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
Soares, A. d. S., Ramos, A. M., Vieira, É. N. R., Vanzela, E. S. L., de Oliveira, P. M., & Paula, D. d. A. (2018). Vacuum impregnation of chitosan‐based edible coating in minimally processed pumpkin.
International Journal of Food Science and Technology, 53(9), 2229-2238.
https://doi.org/10.1111/ijfs.13811
Suwannarak, J., Phanumong, P., & Rattanapanone, N. (2015). Combined effect of calcium salt treatments and chitosan coating on quality and shelf life of carved fruits and vegetables.
Chiang Mai University Journal of Natural Sciences, 14, 269-284.
https://doi.org/10.12982/cmujns.2015.0088
Takahashi, M., Watanabe, H., Kikkawa, J., Ota, M., Watanabe, M., Sato, Y., SATO, N. (2006). Carotenoids extraction from Japanese persimmon (
Hachiya-kaki) peels by supercritical CO
2 with ethanol.
Analytical Sciences, 22(11), 1441-1447.
https://doi.org/10.2116/analsci.22.1441
Zhang, D., & Quantick, P. C. (1997). Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (
Litchi chinensis Sonn.) fruit.
Postharvest Biology and Technology, 12(2), 195-202.
https://doi.org/10.1016/S0925-5214(97)00057-4