Document Type : Original Article


Tea Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization, Lahijan, Iran.


Purpose: Tea plant (Camellia sinensis L., O.Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. Although tea is important in Iran’s economy, little is known about the pattern of genetic variation among the various tea genotypes grown in Iran. Research method: The relationship and the genetic diversity of 20 genotypes of the tea germplasm belonging to three regions were analyzed to provide guidance for the breeding of tea tree using 10 RAPD and 8 ISSR markers. Main findings: Polymorphism percent was 78.6 in RAPD and 68.06 in ISSR fingerprinting. The results of the PIC analysis were in the range of 2 0.44 to 0.49 and 0.34 to 0.50 for RAPD and ISSR respectively. From these results, it can be seen that these primers can detect genetic differences very well. The pairwise similarity coefficient between the genotypes varied from 0.37 to 0.68 for RAPD and from 0.59 to 0.96 for ISSR. The 20 tea genotypes from genetic resources were grouped into three main groups by UPGMA cluster analysis based on RAPD data, and to five main groups by UPGMA cluster analysis based on ISSR data. Both molecular analyses showed a high degree of variation among the genotypes. Limitations: Application of others molecular markers such as AFLP, SSR and (cpDNA investigation can help to found the genetic relationships of samples better. Originality/Value: The present study revealed that RAPD and ISSR methods could be successfully utilized to identify genetic diversity and relationship of tea group and this will provide valuable information to assist parental selection in current and future tea breeding programs.


Main Subjects

Balasaravanan, T., Pius, P. K., Kumar, R. R., Muraleedharan, N., and Shasany, A. K. (2003). Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. lasiocalyx) using AFLP markers. Plant Science. 165(2). 365-372.

Ben-Ying, L. I. U., You-Yong, L. I., Yi-Chun, T. A. N. G., Li-Yuan, W. A. N. G., Cheng, H., & Ping-Sheng, W. A. N. G. (2010). Assessment of genetic diversity and relationship of tea germplasm in Yunnan as revealed by ISSR markers. Acta Agronomica Sinica, 36(3), 391-400.

Beris, F. S., Pehlivan, N., Kac, M., Haznedar, A., Coşkun, F., & Sandalli, C. (2016). Evaluation of genetic diversity of cultivated tea clones (Camellia sinensis (L.) Kuntze) in the eastern black sea coast by inter-simple sequence repeats (ISSRS). Genetika, 48(1), 87-96.

Beris, F. S., Sandalli, C., Canakci, S., Demirbag, Z., & Belduz, A. O. (2005). Phylogenetic analysis of tea clones (Camellia sinensis) using RAPD markers. Biologia, 60, 457-461.

Chang, H. T. (1984). A revision of the tea resource plants. Acta Sientiarum Naturalium Universitatis Sunyatseni, 106, 1–12.

Chen, L., Gao, Q. K., Chen, D. M., & Xu, C. J. (2005). The use of RAPD markers for detecting genetic diversity, relationship and molecular identification of Chinese elite tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in a tea germplasm repository. Biodiversity and Conservation14(6), 1433-1444.

Chen, L., & Yamaguchi, S. (2002). Genetic diversity and phylogeny of tea plant (Camellia sinensis) and its related species and varieties in the section Thea genus Camellia determined by randomly amplified polymorphic DNA analysis. The Journal of Horticultural Science and Biotechnology, 77(6), 729-732.

Chen, L., Yu, F., & Tong, Q. (2000). Discussions on phylogenetic classification and evolution of Sect. Thea. Journal of Tea Science, 20(2), 89-94.

Devarumath, R., Nandy, S., Rani, V., Marimuthu, S., Muraleedharan, N., & Raina, S. (2002). RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp. assamica (Assam-India type). Plant Cell Reports21(2), 166-173.

Diversityarrays. (2007). isolation.pdf bfw. ac. at/ 200/ 1859. Html

Ji, P. Z., Li, H., Gao, L. Z., Zhang, J., Cheng, Z. Q., & Huang, X. Q. (2011). ISSR diversity and genetic differentiation of ancient tea (Camellia sinensis var. assamica) plantations from China: implications for precious tea germplasm conservation. Pakistan Journal of Botany 43(1):281-291.

Kafkas, S., Ercişli, S., Doğan, Y., Ertürk, Y., Haznedar, A., & Sekban, R. (2009). Polymorphism and genetic relationships among tea genotypes from turkey revealed by amplified fragment length polymorphism markers. Journal of the American Society for Horticultural Science, 134(4), 428-434. DOI: 10.21273/JASHS.134.4.428

Kaundun, S. S., Zhyvoloup, A., & Park, Y. G. (2000). Evaluation of the genetic diversity among elite tea (Camellia sinensis var. sinensis) accessions using RAPD markers. Euphytica115(1), 7-16.

Jahangirzadeh S., Gonbad, R. A., & Falakro, K. (2020). Identification of genetic diversity and relationships of some Iranian tea genotypes using SRAP markers. Journal of Horticulture and Postharvest Research, 3(1), 25-34. doi: 10.22077/JHPR.2019.2582.1067

Lai, J. A., Yang, W. C., & Hsiao, J. Y. (2001). An assessment of genetic relationships in cultivated tea clones and native wild tea in Taiwan using RAPD and ISSR markers. Botanical Bulletin of Academia Sinica, 42, doi:10.7016/BBAS.200104.0093

Liu, B. Y., Wang, L. Y., Li, Y. Y., He, W., Zhou, J., Wang, P. S., & Cheng, H. (2009). Genetic diversity in tea (Camellia sinensis) germplasms as revealed by ISSR markers. Indian Journal of Agricultural Sciences79(9), 715-721.

Ma, J. Q., Yao, M. Z., Ma, C. L., Wang, X. C., Jin, J. Q., Wang, X. M., & Chen, L. (2014). Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PloS One9(3), e93131.

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research27(2 Part 1), 209-220.

Mishra, R. K., & Sen-Mandi, S. (2004). Genetic diversity estimates for Darjeeling tea clones based on amplified fragment length polymorphism markers. Journal of Tea Science, 24(2), 86-92. doi: 10.13305/j.cnki.jts.2004.02.003

Paul, S., Wachira, F. N., Powell, W., & Waugh, R. (1997). Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theoretical and Applied Genetics, 94(2), 255-263.

Rani, A., Singh, K., Ahuja, P. S., & Kumar, S. (2012). Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene495(2), 205-210. doi: 10.1016/j.gene.2011.12.029

Rohlf, F.J. (1998) NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, Exeter Software. Setauket. New York.

Roldain-Ruiz, I., Calsyn, E., Gilliand, T. J., Coll, R., Van Eijk, M. J. T., & De Loose, M. (2000). Estimating genetic conformity between related ryegrass (Lolium) varieties, 2. AFLP characterization. Molecular Breeding, 6, 593-602.

Roy, S. C., & Chakraborty, B. N. (2009). Genetic diversity and relationships among tea (Camellia sinensis) cultivars as revealed by RAPD and ISSR based fingerprinting. Indian Journal of Biotechnology, 8(4), 370-376.

Thomas, J., Vijayan, D., Joshi, S. D., Lopez, S. J., & Kumar, R. R. (2006). Genetic integrity of somaclonal variants in tea (Camellia sinensis (L.) O Kuntze) as revealed by inter simple sequence repeats. Journal of Biotechnology, 123(2), 149-154. DOI: 10.1016/j.jbiotec.2005.11.005

Ueno, S., & Tsumura, Y. (2009). Development of microsatellite and amplicon length polymorphism markers for Camellia japonica L. from tea plant (Camellia sinensis) expressed sequence tags. Molecular Ecology Resources, 9(3), 814-816. doi:10.1111/j.1755-0998.2008.02316.x

Yao, M. Z., Chen, L., & Liang, Y. R. (2008). Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programmes. Plant Breeding, 127(2), 166-172.