Akhtar, I., & Nazir, N. (2013). Effect of waterlogging and drought stress in plants. International Journal of Water Resources and Environmental Sciences, 2(2), 34-40. https://doi.org/10.5829/idosi.ijwres.2013.2.2.11125
Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defense responses. Plant Molecular Biology, 69, 473-488. https://doi.org/10.1007/s11103-008-9435-0
Bridgemohan, P. (1995). Depth flooding studies in rice. Caroni Research Station. Technical Report No. 33.
Bridgemohan, P. (1995). Intercropping: an ecophysiological approach to integrated weed management. Ecophysiology of tropical intercropping, Eds. Sinoquet, H. (ed.) Institut National de la Recherche Agronomique, Paris (France) pp. 465-470.
Bridgemohan, P. (2011). Production and partitioning of dry matter in Leren (Calathea allouia (Aubl.) Lindl). Journal of Agriculture of the University of Puerto Rico, 95(1-2), 35-43. https://doi.org/10.5772/intechopen.84528
Bridgemohan, P., & Bridgemohan, R. S. H. (2014a). Evaluation of anti-lodging plant growth regulators on the growth and development of rice (Oryza sativa). Journal of Cereal and Oilseeds, 5(3), 12-16. https://doi.org/10.5897/JCO 14.0128
Bridgemohan, P., & Bridgemohan R. S. H. (2014b). Crop nutrition studies on grain filling and chalkiness in rice. Journal of Plant Breeding and Crop Science, 6(10), 144-152. https://doi.org/10.5897/JPBCS 2014.0474
Bridgemohan, P., & Bridgemohan R. S. H. (2014c). Propanil and fenoxaprop-P-methyl resistance
E. colona (L) link biotype in upland rice.
Journal of Horticulture and Forestry, 6(7), 58-63.
https://doi.org/10.5897/jhf2014.0359
Bridgemohan, P., & Mohammed, M. (2019). The Eco-physiology of Abiotic and Biotic Stress on the pollination and Fertilization of cacao (Theobroma cacao L.; formerly Sterculiaceae family). Biotic and Abiotic Stress in Plants, Ed. Alexandre De Olivera, University of Florida, USA.
Bridgemohan, P., & Shand, C. (1995). Nitrogen studies in rain-fed rice production. Caroni Research Station. Technical Report, No. 33.
Broekaert, W. F., Delauré, S. L., De, Bolle, M. F., & Cammue, B. P. (2006). The role of ethylene in host-pathogen interactions. Annual Review of Phytopathology, 44, 393-416. https://doi.org/10.1146/annurev.phyto.44.070505.143440
Ceesay, M., Reid, W. S., Fernandes, E. C., & Uphoff, N. T. (2006). The effects of repeated soil wetting and drying on lowland rice yield with System of Rice Intensification (SRI) methods. International Journal of Agricultural Sustainability, 4(1), 5-14. https://doi.org/10.1080/14735903.2006.9686007
Chakravorti, S. P., & Patnaik, S. (1990). Fixation and release of potassium in flooded rice soils. Journal of the Indian Society of Soil Science, 38(2), 243-247.
Chen, C. W., Yang, Y. W., Lur, H. S., Tsai, Y. G., & Chang, M. C. (2006). A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant and Cell Physiology, 47(1), 1-13. https://doi.org/10.1093/pcp/pci216.
Colmer, T. D. (2002). Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep‐water rice (Oryza sativa L.). Annals of Botany, 91(2), 301-309. https://doi.org/10.1093/aob/mcf114
Colmer, T. D., Armstrong, W., Greenway, H., Ismail, A. M., Kirk, G. J. D., & Atwell, B. J. (2014). Physiological mechanisms of flooding tolerance in rice: transient complete submergence and prolonged standing water. In
Progress in Botany (pp. 255-307). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-38797-5_9
Dai, G., Deng, G.F., & Zhou, M. (2006). Effect of drought stress on physiology and biochemistry of rice. Journal of Guangxi Agricultural Sciences, 2006-01. en.cnki.com.cn
Dordas, C., Rivoal, J., & Hill, R. D. (2003). Plant hemoglobins, nitric oxide, and hypoxic stress. Annals of Botany, 91, 173-178. https://doi.org/10.1093/aob/mcf115
Fagerstedt, K. V. (2010). Programmed cell death and aerenchyma formation under hypoxia. In Waterlogging Signaling and Tolerance in Plants (pp. 99-118). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10305-6_6
Feng, K., SI, J. Y., Wang, X. L., & Sheng, H. J. (2006). Comparative analysis of rice root anatomical structure under different soil moisture. Plant Nutrition and Fertilizer Science, 4, 554-558.
Fukao, T., Kennedy, R. A., Yamasue, Y., & Rumpho, M. E. (2003). Genetic and biochemical analysis of anaerobically‐induced enzymes during seed germination of Echinochloa crus‐galli varieties tolerant and intolerant of anoxia. Journal of Experimental Botany, 54(386), 1421-1429. https://doi.org/10.1093/jxb/erg140
Hosner, L. R., Freeouf, J. A., & Folsom, B. L. (1973). Solution phosphorus concentration and growth of rice (Oryza sativa L.) in flooded soils. Soil Science Society of America Journal, 37(3), 405-408. https://doi.org/10.2136/sssaj1973.03615995003700030028x
Ismail, A. M., Ella, E. S., Vergara, G. V., & Mackill, D. J. (2009). Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Annals of Botany, 103(2), 197-209. https://doi.org/10.1093/aob/mcn211
Jackson, M. B., & Ram, P. C. (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 91(2), 227-241. https://doi.org/10.1093/aob/mcf242
Keeney, D. R., & Sahrawat, K. L. (1986). Nitrogen transformations in flooded rice soils. Fertilizer Research, 9(1-2), 15-38. https://doi.org/10.1007/BF01048694
Lin, H., Shi, J., Wu, B., Yang, J., Chen, Y., Zhao, Y., & Hu, T. (2010). Speciation and biochemical transformations of sulfur and copper in rice rhizosphere and bulk soil-XANES evidence of sulfur and copper associations. Journal of Soils and Sediments, 10(5), 907-914. https://doi.org/10.1007/s11368-010-0204-8
Mergemann, H., & Sauter, M. (2000). Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiology, 124(2), 609-614. https://doi.org/10.1104%2Fpp.124.2.609
Mikkelsen, D. S., De Datta, S. K., & Obcemea, W. N. (1978). Ammonia volatilization losses from flooded rice soils. Soil Science Society of America Journal, 42(5), 725-730. https://doi.org/10.2136/sssaj1978.03615995004200050014x
Mishra, A., & Salokhe, V. M. (2010). Flooding stress: The effects of planting patterns and water regime on root morphology, physiology and grain yield of rice. Journal of Agronomy and Crop Science, 196(5), 368-378. https://doi.org/10.1111/j.1439-037x.2010,00421. x
Moreno-Jiménez, E., Meharg, A. A., Smolders, E., Manzano, R., Becerra, D., Sánchez-Llerena, J., & Mujer, C. V., Rumpho, M. E., Lin, J. J., & Kennedy, R. A. (1993). Constitutive and inducible aerobic and anaerobic stress proteins in the Echinochloa complex and rice. Plant Physiology, 101(1), 217-226. https://doi.org/10.1104/pp.101.1.217
Nagai, K., Hattori, Y., & Ashikari, M. (2010). Stunt or elongate? Two opposite strategies by which rice adapts to floods. Journal of Plant Research, 123(3), 303-309. https://doi.org/10.1007/s10265-010-0332-7
Nishiuchi, S., Yamauchi, T., Takahashi, H., Kotula, L., & Nakazono, M. (2012). Mechanisms for coping with submergence and waterlogging in rice. Rice, 5(1), 2. https://doi.org/10.1093/aobpla/plu043
Panda, D., Rao, D. N., Sharma, S. G., Strasser, R. J., & Sarkar, R. K. (2006). Submergence effects on rice genotypes during seedling stage: probing of submergence driven changes of photosystem 2 by chlorophyll a fluorescence induction OJIP transients. Photosynthetica, 44(1), 69-75. https://doi.org/10.1007/s11099-005-0200-1
Patrick, Jr. W. H., & Mahapatra, I. C. (1968). Transformation and availability to the rice of nitrogen and phosphorus in waterlogged soils. Advances in Agronomy, 20, 323-359. Academic Press. https://doi.org/10.1016/S0065-2113(08)60860-3
Qin, Y., Liu, S., Guo, Y., Liu, Q., & Zou, J. (2010). Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biology and Fertility of Soils, 46(8), 825-834. https://doi.org/10.1007/s00374-010-0493-5
Reddy, K. R., & Patrick, & W. H. (1986). Denitrification losses in flooded rice fields. Fertilizer Research, 9(1-2), 99-116. https://doi.org/10.1007/978-94-009-4428-2_5
Sajwan, K. S., & Lindsay, W. L. (1986). Effects of redox on zinc deficiency in paddy rice. Soil Science Society of America Journal, 50(5), 1264-1269. https://doi.org/10.2136/sssaj1986.03615995005000050036x
Shao, G. C., Deng, S., Liu, N., Yu, S. E., Wang, M. H., & She, D. L. (2014). Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice. European Journal of Agronomy, 53, 1-9. https://doi.org/10.15608/iccc. y2016.565
Sikuku, P. A., Netondo, G. W., Onyango, J. C., & Musyimi, D. M. (2010). Chlorophyll fluorescence, protein and chlorophyll content of three Nerica rainfed rice varieties under varying irrigation regimes. ARPN Journal of Agricultural and Biological Science, 5(2), 19-25.
Slaton, N. A., Golden, B. R., Norman, R. J., Wilson, C. E., & DeLong, R. E. (2009). Correlation and calibration of soil potassium availability with rice yield and nutritional status. Soil Science Society of America Journal, 73(4), 1192-1201. https://doi.org/10.2136/sssaj2008.0200
Slaton, N. A., Norman, R. J., & Wilson, C. E. (2005). Effect of zinc source and application time on zinc uptake and grain yield of flood-irrigated rice. Agronomy Journal, 97(1), 272-278. https://doi.org/10.2134/agronj2005.0272
Steffens, B. (2014). The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Frontiers in Plant Science, 5(685), 1-5. https://doi.org/10.3389/fpls.2014.00685
Visser, E. J. W., Voesenek, L. A. C. J., Vartapetian, B. B., & Jackson, M. B. (2003). Flooding and plant growth. Annals of Botany, 91(2), 107-109. https://doi.org/10.1093/aob/mcg014
Voesenek, L. A. C. J., Van der Sman, A. J. M., Harren, F. J. M., & Blom, C. W. P. M. (1992). An amalgamation between hormone physiology and plant ecology: a review on flooding resistance and ethylene. Journal of Plant Growth Regulation, 11(3), 171-188. https://doi.org/10.1007/BF00194367
Wignarajah, K., Greenway, H., & John, A. D. (1976). Effect of waterlogging on growth and activity of alcohol dehydrogenase in barley and rice. New Phytologist, 77(3), 585-592. https://doi.org/10.1111/j.1469-8137. 1976.tb04650. x
Willett, I. R., & Higgins, M. L. (1978). Phosphate sorption by reduced and reoxidized rice soils. Soil Research, 16(3), 319-326. https://doi.org/10.1071/SR9780319
Yamauchi, T., Shiono, K., Nagano, M., Fukazawa, A., Ando, M., Takamure, I., & Kato, K. (2015). Ethylene biosynthesis is promoted by very-long-chain fatty acids during lysigenous aerenchyma formation in rice roots. Plant Physiology, 169(1), 180-193. https://doi.org/10.1104/pp.15.00106
Yoo, S. D., Cho, Y., and Sheen, J. (2009). Emerging connections in the ethylene signaling network. Trends in Plant Science, 14(5), 270-279. https://doi.org/10.1016/j.tplants.2009.02.007
Yukiyoshi, K., & Karahara, I. (2014). Role of ethylene signaling in the formation of constitutive aerenchyma in primary roots of rice. AoB Plants, 6(Special issue), 1-9. https://doi.org/10.1093/aobpla/plu043
Zarembinski, T. I., & Theologis, A. (1993). Anaerobiosis and plant growth hormones induce two genes encoding 1-aminocyclopropane-1-carboxylate synthase in rice (Oryza sativa L.). Molecular Biology of the Cell, 4(4), 363-373. https://doi.org/10.1104/pp.111.1.9
Zou, J., Huang, Y., Jiang, J., Zheng, X., & Sass, R. L. (2005). A 3‐year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Global Biogeochemical Cycles, 19(2), 1-9. https://doi.org/10.1029/2004GB002401