Document Type : Original Article

Authors

1 Tea Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Lahijan, Iran

2 Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

3 Jihad Agriculture Organization, Guilan, Rasht, Iran

Abstract

Purpose: Tea is one of the earliest caffeinated non-alcoholic drinks produced from the tip of young shoots. Evaluation of genetic diversity of clones that existed in tea germplasm can be a help to improve the tea breeding program. Research Method: The genetic diversity of 9 tea clones based on morphological, chemical and molecular markers were evaluated at Shahid Eftekhari Fashalam Experimental Station, Tea Research Center, Shaft, Guilan, Iran. Findings: Analysis of variance showed a significant difference between the clones for the studied traits. Descriptive statistics showed that green leaf yield had the highest phenotypic variation with CV of 56.47% and water extract showed the least phenotypic variation (4.40%). Clones 399, 285 and 100 had a significantly higher content of the number of plucking shoots, fresh and dry weight of plucking shoot and green leaf yield than other clones. Regarding the water extract, clones 272 and 100 have a significantly higher value than the other clones. Contents of polyphenols in all of clones were high except clones 276 and 278. The cluster analysis classified tea clones into three groups based on morphological and chemical traits as well as SCoT markers. Research limitations: Not using other molecular markers and biochemical traits. Originality/Value: Great variation of morphological characters was apparent among the selected clones. Based on the Mantel test, the grouping of clones with molecular data was partially corresponding with morphological and chemical traits.

Keywords

Main Subjects

Anderson, J. A., Churchill, G., Autrique, J., Tanksley, S., & Sorrells, M. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36, 181-186. https://doi.org/10.1139/g93-024
Balasaravanan, T., Pius, P. K., Kumar, R. R., Muraleedharan, N., & Shasany, A. K. (2003). Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. lasiocalyx) using AFLP markers. Plant Science165(2), 365-372. https://doi.org/10.1016/s0168-9452(03)00196-1 
Bali, S., Raina, S. N., Bhat, V., Aggarwal, R. K., & Goel, S. (2013). Development of a set of genomic microsatellite markers in tea (Camellia L.) (Camelliaceae). Molecular Breeding, 32(3), 735-741. https://doi.org/10.1007/s11032-013-9902-4
Bandyopadhyay, T. (2011). Molecular marker technology in genetic improvement of tea. International Journal of Plant Breeding and Genetics, 5(1), 23-33.
Beris, F. S., Pehlivan, N., Kac, M., Haznedar, A., Coskun, F., & Sandalli, C. (2016). Evaluation of genetic diversity o cultivateteeeee clones (Camellia sinensis (L.) Kuntze) in the eastern black tea coast by inter-simple sequence repeats (ISSRS). Genetika, 48(1), 87-96. https://doi.org/10.2298/gensr1601087b
Chen, J., Wang, P., Xia, Y., Xu, M., & Pei, S. (2005). Genetic diversity and differentiation of Camellia sinensis L. (cultivated tea) and its wild relatives in Yunnan province of China, revealed by morphology, biochemistry and allozyme studies. Genetic Resources and Crop Evolution, 52(1), 41-52. https://doi.org/10.1007/s10722-005-0285-1
Dellaporta, S. L., Wood, J. & Hicks, J. B. (1983). A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1(4), pp.19-21. https://doi.org/10.1007/BF02712670
Fang, W., Cheng, H., Duan, Y., Jiang, X., & Li, X. (2012). Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers. Plant Systematics and Evolution298(2), 469-483. https://doi.org/10.1007/s00606-011-0559-3
Gholami, M., Poorazizian, S., & Falakro, K. (2019). Colonal selection for selection of superior tea plants and introduction of modified clones. Final Report, Horticultural Sciences Research Institute, Tea Research Center, 67 pp.
Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International, Article ID 431487, 14 pp.
Hamidi, H., Talebi, R., & Keshavarzi, F. (2014). Comparative efficiency of functional gene-based markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP) with ISSR markers for diagnostic fingerprinting in wheat (Triticum aestivum L.). Cereal Research Communications, 42(4), 558-567. https://doi.org/10.1556/CRC.2014.0010
Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.
Hu, C. Y., Tsai, Y. Z., & Lin, S. F. (2014). Development of STS and CAPS markers for variety identification and genetic diversity analysis of tea germplasm in Taiwan. Botanical Studies55(1), 12. https://doi.org/10.1186/1999-3110-55-12
IPGRI, (1997). Descriptors for tea (Camellia sinensis L.). International Plant Genetic Resources Institute, Rome, Italy.
ISO Standards. (1987). ISO No. 1575. Tea-determination of total ash.
ISO Standards. (1994). ISO No. 9768. Tea-determination of water extract.
ISO Standards. (2005). ISO No. 14502-1. Determination of substances characteristic of green and black tea -Part 1: Content of total polyphenols in tea -Colorimetric method using Folin-Ciocalteu reagent.
Jinang, H. B. (2013). Diversity of tea landraces based on agronomic and quality traits in Yunnan province. Journal of Plant Genetic Resources, 14(4), 634-640.
Kaundun, S. S., & Matsumoto, S. (2011). Molecular evidence for maternal inheritance of the chloroplast genome in tea, Camellia sinensis (L.) O. Kuntze. Journal of the Science of Food and Agriculture, 91(14), 2660-2663. https://doi.org/10.1002/jsfa.4508
Kaundun, S. S., & Park, Y. G. (2002). Genetic structure of six Korean tea populations as revealed by RAPD-PCR markers. Crop Science, 42(2), 594-601. https://doi.org/10.2135/cropsci2002.0594
Kaundun, S. S., Zhyvoloup, A., & Park, Y. G. (2000). Evaluation of the genetic diversity among elite tea (Camellia sinensis var. sinensis) accessions using RAPD markers. Euphytica115(1), 7-16. https://doi.org/10.1023/A:1003939120048
Jahangirzadeh, S., Azadi Gonbad, R., & Falakro, K. (2020) Identification of genetic diversity and relationships of some Iranian tea genotypes using SRAP markers. Journal of Horticulture and Postharvest Research, 3(1), 25-34. https://doi.org/10.22077/JHPR.2019.2582.1067
Kim, Y. D., Jeong, M. J., Song, H. J., Kim, J. C., & Choi, M. S. (2012). Morphological characters and genetic relationship between catechins-rich and-poor tea tree (Camellia sinensis L.) lines. Forest Science and Technology, 8(1), 28-33. https://doi.org/10.1080/21580103.2012.658228
Kimura, M., & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics, 49, 725-738.
Kingdom-Ward, F. (1950). Does wild tea exist?. Nature165, 297-299.
Lee, S. H. (1995). Identification of Korean wild tea plants and Japanese green tea cultivars using RAPD markers. Journal of the Korean Tea Society, 1, 129-148.
Lin, L., Hu, Z., Li, J., Zhu, Z., & Ni, S. (2012). Analysis on genetic diversity of ten insular populations of Camellia Japonica. Acta Horticulturae Sinica, 39(8), 1531-1538.
Liu, B., Sun, X., Wang, Y., Li, Y., Cheng, H., Xiong, C., & Wang, P. (2012). Genetic diversity and molecular discrimination of wild tea plants from Yunnan Province based on inter-simple sequence repeats (ISSR) markers. African Journal of Biotechnology11(53), 11566-11574. http://dx.doi.org/10.5897/AJB12.1716
M Perez-de-Castro, A., Vilanova, S., Cañizares, J., Pascual, L., Blanca, J. M., Diez, M., Prohens, J., & Picó, B. (2012). Application of genomic tools in plant breeding. Current genomics13(3), 179-195. https://doi.org/10.2174/138920212800543084 
Magoma, G. N., Wachira, F. N., Obanda, M., Imbuga, M., & Agong, S. G. (2000). The use of catechins as biochemical markers in diversity studies of tea (Camellia sinensis). Genetic Resources and Crop Evolution, 47(2), 107-114. https://doi.org/10.1023/A:1008772902917
Matsumoto, S., Kiriiwa, Y., & Yamaguchi, S. (2004). The Korean tea plant (Camellia sinensis): RFLP analysis of genetic diversity and relationship to Japanese tea. Breeding Science54(3), 231-237. https://doi.org/10.1270/jsbbs.54.231 
Matsumoto, S., Takeuchi, A., Hayatsu, M., & Kondo, S. (1994). Molecular cloning of phenylalanine ammonia-lyase cDNA and classification of varieties and cultivars of tea plants (Camellia sinensis) using the tea PAL cDNA probe. Theoretical and Applied Genetics, 89(6), 671-675. https://doi.org/10.1007/BF00223703
Mondal, T. K. (2002). Assessment of genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) by inter-simple sequence repeat polymerase chain reaction. Euphytica128(3), 307-315.
Mondal, T. K. (2014). Breeding and biotechnology of tea and its wild species. Springer Science & Business Media. 167 pp.
Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106, 283-292.
Ng’etich, W. K., & Wachira, F. N. (1992). Use of a non-destructive method of leaf area estimation in triploid and diploid tea plants (Camellia sinensis). Tea, 13, 11-17.
Nybom, H., Weising, K., & Rotter, B. (2014). DNA fingerprinting in botany: past, present, future. Investigative Genetics5(1), 1.
Paul, S., Wachira, F. N., Powell, W., & Waugh, R. (1997). Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theoretical and Applied Genetics, 94(2), 255-263. https://doi.org/10.1007/s001220050408
Phong, N. H., Pongnak, W., Soytong, K., Poeaim, S., & Poeaim, A. (2016). Diversity of Tea (Camellia sinensis) Grown in Vietnam based on Morphological Characteristics and Inter-primer Binding Sites (iPBS) Marker. International Journal of Agriculture & Biology18(2), 385-389. https://doi.org/10.17957/ijab/15.0100 
Rahimi, M., Kordrostami, M., & SafaeiChaeikar, S. (2019). Genetic variation, population structure and the possibility of association mapping of biochemical and agronomic traits using dominant molecular markers in Iranian tea accessions. Iranian Journal of Science and Technology, Transactions A: Science43(6), 2769-2780.  https://doi.org/10.1007/s40995-019-00784-4 
Raina, S. N., Ahuja, P. S., Sharma, R. K., Das, S. C., Bhardwaj, P., Negi, R., & Pandey, V. (2012). Genetic structure and diversity of India hybrid tea. Genetic Resources and Crop Evolution, 59(7), 1527-1541. https://doi.org/10.1007/s10722-011-9782-6
Rajkumar, S., Karthigeyan, S., Sud, R. K., Rajkumar, R., Muraleedaran, N., Das, S. C., & Ahuja, P. S. (2010). Genetic diversity of Indian tea (Camellia sinensis (L.) Kuntze) germplasm detected using morphological characteristics. Journal of Cell and Plant Sciences, 1(1), 13-22.
Richards, E. J. (2011). Natural epigenetic variation in plant species: a view from the field. Current Opinion in Plant Biology14(2), 204-209. https://doi.org/10.1016/j.pbi.2011.03.009
SAS Institute. (1985). SAS user's guide: statistics (Vol. 2). SAS Inst.
Sealy, J. R. (1958). A Revision of the Genus Camellia. Royal Horticultural Society, London.
Shannon, C .E. (2001). A mathematical theory of communication. SIGMOBILE Mobile Computing and Communications Review, 5: 3-55.
Takeda, Y. (1994). Differences in caffeine and tannin contents between tea [Camellia sinensis] cultivars, and application to tea breeding. Japan Agricultural Research Quarterly (Japan), 28, 117-123.
Toyao, T., & Takeda, Y. (1999). Studies on geographical diversity of floral morphology of tea plant (Camellia sinensis (L.) O. Kuntze) using the method of numerical taxonomy. Chagyo Kenkyu Hokoku (Tea Research Journal), 87, 39-57. https://doi.org/10.5979/cha.1999.39
Upadhyaya, H., Gowda, C., Sastry, D. (2008). Management of germplasm collections and enhancing their use by mini core and molecular approaches. In Capacity building for development and implementation of risk management systems on genetic resources: proceedings of the APEC-ATCWG Workshop, Taichung, Chinese Taipei; October 14-17, pp. 35-70.
Van Bueren, E. L., Jones, S. S., Tamm, L., Murphy, K. M., Myers, J. R., Leifert, C., & Messmer, M. M. (2011). The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: a review. NJAS-Wageningen Journal of Life Sciences58(3-4), 193-205. https://doi.org/10.1016/j.njas.2010.04.001
Van Hintum, T. J., Brown, A. H. D., & Spillane, C. (2000). Core collections of plant genetic resources. Vol 3. Bioversity International, IPGRI, Rome.
Wachira, F. N., Powell, W., & Waugh, R. (1997). An assessment of genetic diversity among Camellia sinensis L. (cultivated tea) and its wild relatives based on randomly amplified polymorphic DNA and organelle-specific STS. Heredity, 78(6), 603-611. https://doi.org/10.1038/hdy.1997.99
Wachira, F., Tanaka, J., & Takeda, Y. (2001). Genetic variation and differentiation in tea (Camellia sinensis) germplasm revealed by RAPD and AFLP variation. The Journal of Horticultural Science and Biotechnology, 76(5), 557-563.
Wang, B. Y., & Ruan, Z. Y. (2012). Genetic diversity and differentiation in Camellia reticulata (Theaceae) polyploid complex revealed by ISSR and ploidy. Genetics and Molecular Research11(1), 503-511. https://doi.org/10.4238/2012.March.6.3
Wickramaratne, M. R. T. (1981). Variation in some leaf characteristics in tea (Camellia sinensis L.) and their use in the identification of clones. Tea Quarterly, 50, 183-189.
Wight, W. (1959). Nomenclature and classification of the tea plant. Nature183(4677), 1726-1728.
Wright, W., & Gilchrist, R. C. J. H. (1961). The concept of kind of tea. Nature, 191(4783), 14-16. https://doi.org/10.1038/191014a0
Xu, Y., Li, P., Zou, C., Lu, Y., Xie, C., Zhang, X., Prasanna, B. M., & Olsen, M. S. (2017). Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany68(11), 2641-2666.
Yan, H., Zhang, Y., Zeng, B., Yin, G., Zhang, X., Ji, Y., Huang, L., Liu, X., & Peng, Y. (2016). Genetic diversity and association of EST-SSR and SCoT markers with rust traits in orchardgrass (Dactylis glomerata L.). Molecules, 21(1), 66. https://doi.org/10.3390/molecules21010066
Yu, F., Xu, N. (1999). Tea germplasm resources of China. In: Jain N.K., (Ed.), Global advances in tea science, Aravali Books International, New Delhi, pp. 393.