Document Type : Original Article


1 Meshginshahr College of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran

2 Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources University of Tehran, Karaj, Iran


Purpose: The Apiaceae family (Umbelliferae) is one of the largest families of flowering plants. The genus Anthriscus of this family is considered of high importance because of its use in folk medicines and flavoring throughout the world. Three species of this genus are represented in the Flora of Iran. The main objective of this study was to evaluate the essential oil composition, phenolic content and antioxidant activity of Anthriscus cerefolium and Anthriscus sylvestris. Research Method: The essential oil samples were isolated by hydrodistillation in a Clevenger type apparatus and analyzed using GC and GC–MS methods. The antioxidant activity and total phenolic content were determined by DPPH scavenging assay and Folin-Ciocalteu method, respectively. Findings: Oxygenated monoterpenes constituted the principal fraction of essential oils obtained from A. cerefolium (rich in estragole), while aliphatic esters were detected to be the main class of compounds isolated from A. sylvestris (rich in chrysanthenyl acetate). Among the essential oils and methanolic extracts from two Anthriscus species at vegetative stage the highest antioxidant activity was observed for essential oil of A. sylvestris (IC50=71.3 μ followed by essential oil of A. cerefolium (IC50=115 μ In addition, the amounts of total phenolic contents of A. cerefolium and A. sylvestris methanolic extracts at full flowering stage (76.7 and 74.6 mg GAE.L-1) were determined. Other important group of compounds and their biological properties needs to be studied in Anthriscus species due to their potential pharmacological and food industry value. Research limitations: No limitations were founded. Originality/Value: Since the essential oil of A. sylvestris at vegetative stage demonstrated the noticeable antioxidant ability which makes it well qualified to be used as natural ingredients to synthetic antioxidants in food industry.


Main Subjects

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/
quadrupole mass spectroscopy
. Illinois: Allured Business Media.

Ayan, A. K., Yanar, P., Cirak, C., & Bilgener, M. (2007). Morphogenetic and diurnal variation of total phenols in some Hypericum species from Turkey during their phenological cycles. Bangladesh Journal of Botany, 36(1), 39-46.‏

Bagci, E., Aydin, E., Ungureanu, E., & Hritcu, L. (2016). Anthriscus nemorosa essential oil inhalation prevents memory impairment, anxiety and depression in scopolamine-treated rats. Biomedicine and Pharmacotherapy, 84, 1313-1320.‏

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils–a review. Food and Chemical Toxicology, 46(2), 446-475.‏

Baser, K. H. C., Ermin, N., & Demirçakmak, B. (1998). The essential oil of Anthriscus cerefolium (L.) Hoffm. (Chervil) growing wild in Turkey. Journal of Essential Oil Research, 10(4), 463-464.‏

Borg-Karlson, A. K., Valterová, I., & Nilsson, L. A. (1993). Volatile compounds from flowers of six species in the family Apiaceae: bouquets for different pollinators?. Phytochemistry, 35(1), 111-119.‏

Bos, R., Koulman, A., Woerdenbag, H. J., Quax, W. J., & Pras, N. (2002). Volatile components from Anthriscus sylvestris (L.) Hoffm. Journal of Chromatography A, 966(1-2), 233-238.‏

Dall’Acqua, S., Giorgetti, M., Cervellati, R., & Innocenti, G. (2006). Deoxypodophyllotoxin content and antioxidant activity of aerial parts of Anthriscus sylvestris Hoffm. Zeitschrift für Naturforschung C, 61(9-10), 658-662.‏

Djouahri, A., Saka, B., Boudarene, L., Lamari, L., Sabaou, N., & Baaliouamer, A. (2017). Essential oil variability of Tetraclinis articulata (Vahl) Mast. parts during its phenological cycle and incidence on the antioxidant and antimicrobial activities. Chemistry & Biodiversity, 14(2), e1600216.‏

El Gendy, A. G., El Gohary, A. E., Omer, E. A., Hendawy, S. F., Hussein, M. S., Petrova, V., & Stancheva, I. (2015). Effect of nitrogen and potassium fertilizer on herbage and oil yield of chervil plant (Anthriscus cerefolium L.). Industrial Crops and Products, 69, 167-174.

Fejes, S., Blázovics, A., Lugasi, A., Lemberkovics, É., Petri, G., & Kéry, Á. (2000). In vitro antioxidant activity of Anthriscus cerefolium L. (Hoffm.) extracts. Journal of Ethnopharmacology, 69(3), 259-265.‏

Fujioka, T., Furumi, K., Fujii, H., Okabe, H., Mihashi, K., Nakano, Y., Matsunaga, H., Katano, M., & Mori, M. (1999). Antiproliferative constituents from umbelliferae plants. V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root of Angelica japonica. Chemical and Pharmaceutical Bulletin, 47(1), 96-100.‏

Hendawy, S. F., Hussein, M. S., El-Gohary, A. E., & Soliman, W. S. (2019). Chemical constituents of essential oil in Chervil (Anthriscus cerefolium L. Hoffm.) cultivated in different locations. Journal of Essential Oil Bearing Plants, 22(1), 264-272.‏

Hendrawati, O., Hille, J., Woerdenbag, H. J., Quax, W. J., & Kayser, O. (2012). In vitro regeneration of wild chervil (Anthriscus sylvestris L.). In Vitro Cellular & Developmental Biology-Plant, 48(3), 355-361.‏

Ikeda, R., Nagao, T., Okabe, H., Nakano, Y., Matsunaga, H., Katano, M., & Mori, M. (1998). Antiproliferative constituents in Umbelliferae plants. III. Constituents in the root and the ground part of Anthriscus sylvestris Hoffm. Chemical and Pharmaceutical Bulletin, 46(5), 871-874.‏

Jeong, G. S., Kwon, O. K., Park, B. Y., Oh, S. R., Ahn, K. S., Chang, M. J., Oh, W. K., Kim, J. C., Min, B. S., Kim, Y. C., & Lee, H. K. (2007). Lignans and coumarins from the roots of Anthriscus sylvestris and their increase of caspase-3 activity in HL-60 cells. Biological and Pharmaceutical Bulletin, 30(7), 1340-1343.‏

Kiliç, Ö. (2017). Essential oil composition of aerial parts of two Anthriscus Pers. species from Turkey. Journal of Essential Oil Bearing Plants, 20(2), 591-596.‏

Kim, S. B., Lee, A. Y., Chun, J. M., Lee, A. R., Kim, H. S., Seo, Y. S., Moon, B. C., & Kwon, B. I. (2019). Anthriscus sylvestris root extract reduces allergic lung inflammation by regulating interferon regulatory factor 4-mediated Th2 cell activation. Journal of Ethnopharmacology, 232, 165-175.‏

Kondo, S., Tsuda, K., Muto, N., & Ueda, J. E. (2002). Antioxidative activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars. Scientia Horticulturae, 96(1-4), 177-185.‏ 

Kozawa, M., Baba, K., Matsuyama, Y., Kido, T., Sakai, M., & Takemoto, T. (1982). Components of the root of Anthriscus sylvestris HOFFM. II. Insecticidal activity. Chemical and Pharmaceutical Bulletin, 30(8), 2885-2888.‏

Kuiper, P. J. C., & Stuiver, B. (1972). Cyclopropane fatty acids in relation to earliness in spring and drought tolerance in plants. Plant Physiology, 49(3), 307-309.‏

Kurihara, T., & Kikuchi, M. (1979). Studies on the constituents of Anthriscus sylvestris Hoffm. II. On the components of the flowers and leaves. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan, 99(6), 602.‏

Lai, P., Rao, H., & Gao, Y. (2018). Chemical composition, cytotoxic, antimicrobial and antioxidant activities of essential oil from Anthriscus caucalis M. Bieb grown in China. Records of Natural Products, 12(3), 290-294.

Lemberkovics, E., Petri, G., Vitányi, G., & Lelik, L. (1994). Essential oil composition of chervil growing wild in Hungary. Part 1. Journal of Essential Oil Research, 6(4), 421-422.‏

Lim, Y. H., Leem, M. J., Shin, D. H., Chang, H. B., Hong, S. W., Moon, E. Y., Lee, D. K., Yoon, S. J., & Woo, W. S. (1999). Cytotoxic constituents from the roots of Anthriscus sylvestris. Archives of Pharmacal Research, 22(2), 208-212.‏

Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118.‏

Lyytinen, A., & Lindström, L. (2019). Responses of a native plant species from invaded and uninvaded areas to allelopathic effects of an invader. Ecology and Evolution, 9(10), 6116-6123.‏

Mastelic, J., Jerkovic, I., Blažević, I., Poljak-Blaži, M., Borović, S., Ivančić-Baće, I., Smrečki, V., Žarković, N., Brčić-Kostic, K., Vikić-Topić, D., & Müller, N. (2008). Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. Journal of Agricultural and Food Chemistry, 56(11), 3989-3996.‏

Milovanovic, M., Picuric-Jovanovic, K., Vucelic-Radovic, B., & Vrbaski, Z. (1996). Antioxidant effects of flavonoids of Anthriscus sylvestris in lard. Journal of the American Oil Chemists’ Society, 73(6), 773-776.‏

Mozaffarian, V. (2007). Umbelliferae in flora of Iran no. 54. Tehran: Research Institute of Forests and Rangelands press.

Nickavar, B., Mojab, F., & Mojahedi, A. (2009). Composition of the essential oil from Anthriscus nemorosa. Chemistry of Natural Compounds, 45(3), 443-444.‏

Norouzi, R., & Norouzi, M. (2018). Chemical composition variability of essential oils in different parts of the spice plant Heracleum rawianum during ontogenesis. Journal of Essential Oil Bearing Plants, 21(5), 1166-1175.‏

Ochoa-López, S., Villamil, N., Zedillo-Avelleyra, P., & Boege, K. (2015). Plant defence as a complex and changing phenotype throughout ontogeny. Annals of Botany, 116(5), 797-806.‏

 Pavlović, M., Petrović, S., Milenković, M., Couladis, M., Tzakou, O., & Niketić, M. (2011). Chemical composition and antimicrobial activity of Anthriscus nemorosa root essential oil. Natural Product Communications, 6(2), 271-273.‏

Ramezani, S., Rasouli, F., & Solaimani, B. (2009). Changes in essential oil content of coriander (Coriandrum sativum L.) aerial parts during four phonological stages in Iran. Journal of Essential Oil Bearing Plants, 12(6), 683-689.‏

Riahi, L., Elferchichi, M., Ghazghazi, H., Jebali, J., Ziadi, S., Aouadhi, C., & Mliki, A. (2013). Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia. Industrial Crops and Products, 49, 883-889.‏

Roby, M. H. H., Sarhan, M. A., Selim, K. A. H., & Khalel, K. I. (2013). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Industrial Crops and Products, 44, 437-445.‏

Sayed-Ahmad, B., Talou, T., Saad, Z., Hijazi, A., & Merah, O. (2017). The Apiaceae: Ethnomedicinal family as source for industrial uses. Industrial crops and products, 109, 661-671.‏

Sellami, I. H., Maamouri, E., Chahed, T., Wannes, W. A., Kchouk, M. E., & Marzouk, B. (2009). Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.). Industrial Crops and Products, 30(3), 395-402.‏

Shahwar, D., Raza, M. A., Bukhari, S., & Bukhari, G. (2012). Ferric reducing antioxidant power of essential oils extracted from Eucalyptus and Curcuma species. Asian Pacific Journal of Tropical Biomedicine, 2(3), S1633-S1636.‏

Simandi, B., Oszagyan, M., Lemberkovics, E., Petri, G., Kery, A., & Fejes, S. (1996). Comparison of the volatile composition of chervil oil obtained by hydrodistillation and supercritical fluid extraction. Journal of Essential Oil Research, 8(3), 305-306.‏

Trumbeckaite, S., Benetis, R., Bumblauskiene, L., Burdulis, D., Janulis, V., Toleikis, A., Viškelis, P., & Jakštas, V. (2011). Achillea millefolium L. sl herb extract: Antioxidant activity and effect on the rat heart mitochondrial functions. Food Chemistry, 127(4), 1540-1548.

Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3), 93.‏

Valterová, I., Nehlin, G., & Borg-Karlson, A. K. (1997). Host plant chemistry and preferences in egg-laying Trioza apicalis (Homoptera, Psylloidea). Biochemical Systematics and Ecology, 25(6), 477-491.‏

Verma, V. A. N. D. A. N. A., & Kasera, P. K. (2007). Variations in secondary metabolites in some arid zone medicinal plants in relation to season and plant growth. Indian Journal of Plant Physiology, 12(2), 203.‏

Žemlička, L., Fodran, P., Lukeš, V., Vagánek, A., Slováková, M., Staško, A., Dubaj, T., Liptaj, T., Karabín, M., Birošová, L., & Rapta, P. (2014). Physicochemical and biological properties of luteolin-7-O-β-d-glucoside (cynaroside) isolated from Anthriscus sylvestris (L.) Hoffm. Monatshefte für Chemie-Chemical Monthly, 145(8), 1307-1318.‏

Zengin, G., Mahomoodally, M. F., Paksoy, M. Y., Picot-Allain, C., Glamocilja, J., Sokovic, M., Diuzheva, A., Jekő, J., Cziáky, Z., Rodrigues, M. J., & Sinan, K. I. (2019). Phytochemical characterization and bioactivities of five Apiaceae species: Natural sources for novel ingredients. Industrial Crops and Products, 135, 107-121.