Antonissen, G., Van Immerseel, F., Pasmans, F., Ducatelle, R., Janssens, G. P., & De Baere, S. (2015). Mycotoxins deoxynivalenol and fumonisins alter the extrinsic component of intestinal barrier in broiler chickens.
Journal of Agricultural and Food Chemistry,
63(50), 10846-10855.
https://doi.org/10.1021/acs.jafc.5b04119
Beev, G., Denev, S., & Bakalova, D. (2013). Zearalenone-producing activity of Fusarium graminearum and Fusarium oxysporum isolated from Bulgarian wheat. Bulgarian Journal of Agricultural Science, 19(2), 255-259.
Duverger, F., Bailly, S., Querin, A., Pinson-Gadais, L., Guerre, P., & Bailly, J. D. (2011). Influence of culture medium and incubation time on the simultaneous synthesis of Deoxynivalenol and zearalenone by Fusarium graminearum. Revenue Medical and Veterinary, 162, 93-97.
Greenhalgh, R., Neish, G. A., & Miller, J. D. (1983). Deoxynivalenol, acetyl deoxynivalenol, and zearalenone formation by Canadian isolates of
Fusarium graminearum on solid substrates.
Applied and Environmental Microbiology,
46(3), 625-629.
https://doi.org/10.1128/aem.46.3.625-629.1983
Häggblom, P., & Nordkvist, E. (2015). Deoxynivalenol, zearalenone, and
Fusarium graminearum contamination of cereal straw; field distribution; and sampling of big bales.
Mycotoxin Research,
31(2), 101-107.
https://doi.org/10.1007/s12550-015-0220-z
Jimenez, M., Manez, M., & Hernandez, E. (1996). Influence of water activity and temperature on the production of zearalenone in corn by three
Fusarium species.
International Journal of Food Microbiology,
29(2-3), 417-421.
https://doi.org/10.1016/0168-1605(95)00073-9
Kokkonen, M., Ojala, L., Parikka, P., & Jestoi, M. (2010). Mycotoxin production of selected
Fusarium species at different culture conditions.
International Journal of Food Microbiology,
143(1-2), 17-25.
https://doi.org/10.1016/j.ijfoodmicro.2010.07.015
Lahouar, A., Marin, S., Crespo-Sempere, A., Saïd, S., & Sanchis, V. (2017). Influence of temperature, water activity and incubation time on fungal growth and production of ochratoxin A and zearalenone by toxigenic
Aspergillus tubingensis and
Fusarium incarnatum isolates in sorghum seeds.
International Journal of Food Microbiology,
242, 53-60.
https://doi.org/10.1016/j.ijfoodmicro.2016.11.015
Lysøe, E., Klemsdal, S. S., Bone, K. R., Frandsen, R. J., Johansen, T., Thrane, U., & Giese, H. (2006). The PKS4 gene of
Fusarium graminearum is essential for zearalenone production.
Applied and Environmental Microbiology,
72(6), 3924-3932.
https://doi.org/10.1128/aem.00963-05
Manka, M., Visconti, A., Chełkowski, J., & Baottalico, A. (1985). Pathogenicity of
Fusarium isolates from wheat, rye and triticale towards seedlings and their ability to produce trichothecenes and zearalenone.
Journal of Phytopathology,
113(1), 24-29.
https://doi.org/10.1111/j.1439-0434.1985.tb00820.x
Martins, M. L., & Martins, H. M. (2002). Influence of water activity, temperature and incubation time on the simultaneous production of deoxynivalenol and zearalenone in corn (
Zea mays) by
Fusarium graminearum.
Food Chemistry,
79(3), 315-318.
https://doi.org/10.1016/s0308-8146(02)00147-4
Milano, G. D., & López, T. A. (1991). Influence of temperature on zearalenone production by regional strains of
Fusarium graminearum and
Fusarium oxysporum in culture.
International Journal of Food Microbiology,
13(4), 329-333.
https://doi.org/10.1016/0168-1605(91)90092-4
Molto, G. A., Gonzalez, H. H. L., Resnik, S. L., & Gonzalez, A. P. (1997). Production of trichothecenes and zearalenone by isolates of
Fusarium spp. from Argentinian maize.
Food Additives and Contaminants,
14(3), 263-268.
https://doi.org/10.1080/02652039709374523
Muthomi, J. W., Ndung’u, J. K., Gathumbi, J. K., Mutitu, E. W., & Wagacha, J. M. (2008). The occurrence of
Fusarium species and mycotoxins in Kenyan wheat.
Crop Protection,
27(8), 1215-1219.
https://doi.org/10.1016/j.cropro.2008.03.001
Richardson, K. E., Hagler, W. M., Campbell, C. L., & Hamilton, P. B. (1985). Production of zearalenone, T-2 toxin, and deoxynivalenol by
Fusarium spp. isolated from plant materials grown in North Carolina.
Mycopathologia,
90(3), 155-160.
https://doi.org/10.1007/bf00436731
Ryu, D., & Bullerman, L. B. (1999). Effect of cycling temperatures on the production of deoxynivalenol and zearalenone by
Fusarium graminearum NRRL 5883.
Journal of Food Protection,
62(12), 1451-1455.
https://doi.org/10.4315/0362-028x-62.12.1451
Sim, J. H., Tian, F., Jung, S. Y., Auh, J. H., & Chun, H. S. (2018). Multiplex polymerase chain reaction assays for the detection of the zearalenone chemotype of
Fusarium species in white and brown rice.
International Journal of Food Microbiology,
269, 120-127.
https://doi.org/10.1016/j.ijfoodmicro.2018.02.003
Skrinjar, M., Stubblefield, R. D., Stojanović, E., & Dimić, G. (1995). Occurrence of Fusarium species and zearalenone in dairy cattle feeds in Vojvodina. Acta Veterinaria Hungarica, 43(2-3), 259-267.
Streit, E., Naehrer, K., Rodrigues, I., & Schatzmayr, G. (2013). Mycotoxin occurrence in feed and feed raw materials worldwide: long‐term analysis with special focus on Europe and Asia.
Journal of the Science of Food and Agriculture,
93(12), 2892-2899.
https://doi.org/10.1002/jsfa.6225
Szabó, B., Varga, M., György, A., Mesterházy, Á., & Tóth, B. (2016). Role of Fusarium species in mycotoxin contamination of maize. Review on Agriculture and Rural Development, 5(1-2), 104-108.
Wilson, D. (2010). Clinical veterinary advisor-e-book: the horse. Elsevier Health Sciences.
Wu, L., Qiu, L., Zhang, H., Sun, J., Hu, X., & Wang, B. (2017). Optimization for the production of deoxynivalenoland zearalenone by
Fusarium graminearum using response surface Methodology.
Toxins,
9(2), 57.
https://doi.org/10.3390/toxins9020057