Document Type : Review Article

Author

National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan

Abstract

Purpose: Tomato, being a climacteric and soft textured fruit, faces many challenges in postharvest life, and many factors influence its quality during storage. It faces price fluctuation in Pakistan due to postharvest losses. This review focuses on intensive research in recent years regarding edible coatings and films to minimize crop losses, and to maintain tomatoes quality by giving structural integrity. Findings: Tomato is a highly demanded vegetable due to its extensive uses, but its postharvest losses are 33-46% in developing countries. The application of edible coating is one of many methods used to extend the shelf life of tomatoes.  The edible coating acts as semipermeable barriers to gases and water vapors. It is not a new concept and dates back to the 12th century. Edible coatings are made from lipids, carbohydrates, or protein-based materials, with additional additives like emulsifiers, plasticizers, release agents, and lubricants. The use of edible coating with different formulations is an effective method for extending the shelf life of fresh produce and tomatoes. Limitations: Edible coating formulations should be wet and uniformly spread on fruit surfaces, as proper adhesion, cohesion, and durability matter. Significantly less eco-friendly coatings are available compared to chemically synthesized layers. Directions for future research:  These days, many new materials are evolving as coating solutions based on their film-forming properties, and these materials can replace synthetic plastic-based films. Composite and multi-layer coatings should be developed and micro encapsulation techniques should be adopted for better results. 

Keywords

Main Subjects

Abebe, Z., Tola, Y. B., & Mohammed, A. (2017). Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon Esculentum Mill.) fruits. African Journal of Agricultural Research12(8), 550-565.  https://doi.org/10.5897/ajar2016.11648 
Abushita, A. A., Hebshi, E. A., Daood, H. G., & Biacs, P. A. (1997). Determination of antioxidant vitamins in tomatoes. Food Chemistry60(2), 207-212. https://doi.org/10.1016/S0308-8146(96)00321-4
Adjouman, Y. D., Nindjin, C., Kouassi, K. N., Tetchi, F. A., N'Guessan, G. A., & Sindic, M. (2018). Effect of edible coating based on improved cassava starch on postharvest quality of fresh tomatoes (Solanum lycopersicum L.). International Journal of Nutritional Science and Food Technology4(1), 1-10.
Agarwal, A., Shen, H., Agarwal, S., & Rao, A. V. (2001). Lycopene content of tomato products: its stability, bioavailability and in vivo antioxidant properties. Journal of Medicinal Food4(1), 9-15. https://doi.org/10.1089/10966200152053668
Agarwal, S., & Rao, A. V. (2000). Tomato lycopene and its role in human health and chronic diseases. Cmaj163(6), 739-744.
Ahmed, F. A., Sipes, B. S., & Alvarez, A. M. (2017). Postharvest diseases of tomato and natural products for disease management. African Journal of Agricultural Research12(9), 684-691. https://doi.org/10.5897/ajar2017.12139
Ali, A., Maqbool, M., Ramachandran, S., & Alderson, P. G. (2010). Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology58(1), 42-47. http://dx.doi.org/10.1016/j.postharvbio.2010.05.005
Amarillas, L., Lightbourn‐Rojas, L., Angulo‐Gaxiola, A. K., Basilio Heredia, J., González‐Robles, A., & León‐Félix, J. (2018). The antibacterial effect of chitosan‐based edible coating incorporated with a lytic bacteriophage against Escherichia coli O157: H7 on the surface of tomatoes. Journal of Food Safety38(6), e12571. http://dx.doi.org/10.1111/jfs.12571
Azodanlou, R., Darbellay, C., Luisier, J. L., Villettaz, J. C., & Amadò, R. (2003). Development of a model for quality assessment of tomatoes and apricots. LWT-Food Science and Technology36(2), 223-233. http://dx.doi.org/10.1016/S0023-6438(02)00204-9
Badawy, M. E., & Rabea, E. I. (2009). Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biology and Technology51(1), 110-117. http://dx.doi.org/10.1016/j.postharvbio.2008.05.018
Bailén, G., Guillén, F., Castillo, S., Serrano, M., Valero, D., & Martínez-Romero, D. (2006). Use of activated carbon inside modified atmosphere packages to maintain tomato fruit quality during cold storage. Journal of Agricultural and Food Chemistry54(6), 2229-2235. http://dx.doi.org/10.1021/jf0528761
Baldwin, E. A., Scott, J. W., Einstein, M. A., Malundo, T. M. M., Carr, B. T., Shewfelt, R. L., & Tandon, K. S. (1998). Relationship between sensory and instrumental analysis for tomato flavor. Journal of the American Society for Horticultural Science123(5), 906-915. http://dx.doi.org/10.21273/JASHS.123.5.906
Bautista-Baños, S., Hernandez-Lauzardo, A. N., Velazquez-Del Valle, M. G., Hernández-López, M., Barka, E. A., Bosquez-Molina, E., & Wilson, C. L. (2006). Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection25(2), 108-118. https://doi.org/10.1016/j.cropro.2005.03.010
Breda, C. A., Morgado, D. L., de Assis, O. B. G., & Duarte, M. C. T. (2017). Effect of chitosan coating enriched with pequi (Caryocar brasiliense Camb.) peel extract on quality and safety of tomatoes (Lycopersicon esculentum Mill.) during storage. Journal of Food Processing and Preservation41(6), e13268. https://doi.org/10.1111/jfpp.13268 
Brooks, M. S., Ghaly, A. E., & Abou El-Hana, N. H. (2008). Effect of osmotic pre-treatment on the air-drying behavior and quality of plum tomato pieces. International Journal of Food Engineering4(5). http://dx.doi.org/10.2202/1556-3758.1495
Canene-Adams, K., Campbell, J. K., Zaripheh, S., Jeffery, E. H., & Erdman Jr, J. W. (2005). The tomato as a functional food. The Journal of Nutrition135(5), 1226-1230. https://doi.org/10.1093/jn/135.5.1226
Chohan, T. Z., & Ahmad, S. (2008). An assessment of tomato production practices in Danna Katchely, Azad Jammu Kashmir. Pakistan Journal of Life and Social Sciences,6, 96-102.
Chrysargyris, A., Nikou, A., & Tzortzakis, N. (2016). Effectiveness of Aloe vera gel coating for maintaining tomato fruit quality. New Zealand Journal of Crop and Horticultural Science44(3), 203-217.  https://doi.org/10.1080/01140671.2016.1181661 
Cohen, L. A. (2002). A review of animal model studies of tomato carotenoids, lycopene, and cancer chemoprevention. Experimental Biology and Medicine227(10), 864-868. https://doi.org/10.1177/153537020222701005
Costa, J. M., & Heuvelink, E. (2018). The global tomato industry. Tomatoes. Boston, USA: CABI, 1-26. http://dx.doi.org/10.1079/9781780641935.0001
Das, D. K., Dutta, H., & Mahanta, C. L. (2013). Development of a rice starch-based coating with antioxidant and microbe-barrier properties and study of its effect on tomatoes stored at room temperature. LWT-Food Science and Technology50(1), 272-278. http://dx.doi.org/10.1016/j.lwt.2012.05.018
Davila-Avina, J. E., Villa-Rodríguez, J. A., Villegas-Ochoa, M. A., Tortoledo-Ortiz, O., Olivas, G. I., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2014). Effect of edible coatings on bioactive compounds and antioxidant capacity of tomatoes at different maturity stages. Journal of Food Science and Technology51(10), 2706-2712. http://dx.doi.org/10.1007/s13197-012-0771-3
El Ghaouth, A., Ponnampalam, R., Castaigne, F., & Arul, J. (1992). Chitosan coating to extend the storage life of tomatoes. HortScience27(9), 1016-1018. http://dx.doi.org/10.21273/HORTSCI.27.9.1016
El-Anany, A. M., Hassan, G. F. A., & Ali, F. R. (2009). Effects of edible coatings on the shelf-life and quality of Anna apple (Malus domestica Borkh) during cold storage. Journal of Food Technology7(1), 5-11.
Engelhard, Y. N., Gazer, B., & Paran, E. (2006). Natural antioxidants from tomato extract reduce blood pressure in patients with grade-1 hypertension: a double-blind, placebo-controlled pilot study. American Heart Journal151(1), 100-106. https://doi.org/10.1016/j.ahj.2005.05.008
Etminan, M., Takkouche, B., & Caamaño-Isorna, F. (2004). The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiology and Prevention Biomarkers13(3), 340-345.
Fagundes, C., Pérez-Gago, M. B., Monteiro, A. R., & Palou, L. (2013). Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. International Journal of Food Microbiology166(3), 391-398. http://dx.doi.org/10.1016/j.ijfoodmicro.2013.08.001
Firdous, N., Khan, M. R., Butt, M. S., & Shahid, M. (2020). Application of aloe vera gel based edible coating to maintain postharvest quality of tomatoes. Pakistan Journal of Agricultural Sciences57(1). http://dx.doi.org/10.21162/PAKJAS/20.7746
García, M., Casariego, A., Diaz, R., & Roblejo, L. (2014). Effect of edible chitosan/zeolite coating on tomatoes quality during refrigerated storage. Emirates Journal of Food and Agriculture (EJFA)26(3), 238-246. https://doi.org/10.9755/ejfa.v26i3.16620
George, B., Kaur, C., Khurdiya, D. S., & Kapoor, H. C. (2004). Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chemistry84(1), 45-51. https://doi.org/10.1016/S0308-8146(03)00165-1
Giovannucci, E. (1999). Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. Journal of the National Cancer Institute91(4), 317-331. https://doi.org/10.1093/jnci/91.4.317
Hatirli, S. A., Ozkan, B., & Fert, C. (2006). Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy31(4), 427-438. https://doi.org/10.1016/j.renene.2005.04.007
Helyes, L., & Lugasi, A. (2006). Formation of certain compounds having technological and nutritional importance in tomato fruits during maturation. Acta Alimentaria35(2), 183-193. https://doi.org/10.1556/AAlim.35.2006.2.5
Ishtiaq, S., Panhwar, W. A., Mehmood, S. A., Khatri, I., & Ahmad, S. (2017). Population and incidence of pests on different tomato (Lycopersicon esculentum L.) varieties from district Mansehra Pakistan. Journal of Entomology and Zoology Studies, 800(55), 800-803.
Javanmardi, J., & Kubota, C. (2006). Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology41(2), 151-155. https://doi.org/10.1016/j.postharvbio.2006.03.008
Kader, A. A. (2002). US grade standards. Postharvest Technology of Horticultural Crops3311, 287. https://doi.org/10.1111/j.1365-2621.2001.00513.x
Kader, A. A., Morris, L. L., Stevens, M. A., & Albright-Holton, M. (1978). Composition and flavor quality of fresh market tomatoes as influenced by some postharvest handling procedures. Journal of the American Society for Horticultural Science103(1), 6-13.
Kaur, C., & Kapoor, H. C. (2001). Antioxidants in fruits and vegetables–the millennium’s health. International Journal of Food Science and Technology36(7), 703-725. https://doi.org/10.1111/j.1365-2621.2001.00513.x  
Khalil, O. A., Mounir, A. M., & Hassanien, R. A. (2020). Effect of gamma irradiated Lactobacillus bacteria as an edible coating on enhancing the storage of tomato under cold storage conditions. Journal of Radiation Research and Applied Sciences13(1), 317-329. http://dx.doi.org/10.1080/16878507.2020.1723886
Kuti, J. O., & Konuru, H. B. (2005). Effects of genotype and cultivation environment on lycopene content in red‐ripe tomatoes. Journal of the Science of Food and Agriculture85(12), 2021-2026.  https://doi.org/10.1002/jsfa.2205
Leandro, D. S. P., Bitencourt, T. A., Saltoratto, A. L., Seleghim, M. H., & Assis, O. B. (2018). Antifungal activity of chitosan and its quaternized derivative in gel form and as an edible coating on cut cherry tomatoes. Journal of Agricultural Sciences (Belgrade)63(3), 271-285.
Mahfoudhi, N., & Hamdi, S. (2015). Use of almond gum and gum Arabic as novel edible coating to delay postharvest ripening and to maintain sweet cherry (Prunus avium) quality during storage. Journal of Food Processing and Preservation39(6), 1499-1508. http://dx.doi.org/10.1111/jfpp.12369
Motlagh, S., Ravines, P., Karamallah, K. A., & Ma, Q. (2006). The analysis of Acacia gums using electrophoresis. Food Hydrocolloids20(6), 848-854. http://dx.doi.org/10.1016/j.foodhyd.2005.08.007
Mutschler, M. A., Wolfe, D. W., Cobb, E. D., & Yourstone, K. S. (1992). Tomato fruit quality and shelf life in hybrids heterozygous for the alc ripening mutant. HortScience27(4), 352-355.     https://doi.org/10.21273/HORTSCI.27.4.352
Nawab, A., Alam, F., & Hasnain, A. (2017). Mango kernel starch as a novel edible coating for enhancing shelf-life of tomato (Solanum lycopersicum) fruit. International Journal of Biological Macromolecules103, 581-586. http://dx.doi.org/10.1016/j.ijbiomac.2017.05.057
Ochida, C. O., Itodo, A. U., & Nwanganga, P. A. (2019). A Review on Postharvest Storage, Processing and Preservation of Tomatoes (Lycopersicon esculentum Mill). Asian Food Science Journal, 1-10. http://dx.doi.org/10.9734/AFSJ/2019/44518
Paetau, I., Khachik, F., Brown, E. D., Beecher, G. R., Kramer, T. R., Chittams, J., & Clevidence, B. A. (1998). Chronic ingestion of lycopene-rich tomato juice or lycopene supplements significantly increases plasma concentrations of lycopene and related tomato carotenoids in humans. The American Journal of Clinical Nutrition68(6), 1187-1195. https://doi.org/10.1093/ajcn/68.6.1187
Paladugu, K., & Gunasekaran, K. (2017). Development of gum arabic edible coating formulation through Nanotechnological approaches and their effect on physico-chemical change in tomato (Solanum lycopersicum L) fruit during storage. International Journal of Agriculture Sciences, ISSN, 0975-3710.
Park, H. J., Chinnan, M. S., & Shewfelt, R. L. (1994). Edible corn‐zein film coatings to extend storage life of tomatoes. Journal of Food Processing and Preservation18(4), 317-331.    http://dx.doi.org/10.1111/j.1745-4549.1994.tb00255.x
Ramos-García, M., Bosquez-Molina, E., Hernández-Romano, J., Zavala-Padilla, G., Terrés-Rojas, E., Alia-Tejacal, I., & Bautista-Baños, S. (2012). Use of chitosan-based edible coatings in combination with other natural compounds, to control Rhizopus stolonifer and Escherichia coli DH5α in fresh tomatoes. Crop Protection, 38, 1-6.
Rao, A. V., & Agarwal, S. (1998). Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutrition and Cancer, 31(3), 199-203. https://doi.org/10.1080/01635589809514703
Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research55(3), 207-216. https://doi.org/10.1016/j.phrs.2007.01.012
Reddy, M. B., Angers, P., Castaigne, F., & Arul, J. (2000). Chitosan effects on blackmold rot and pathogenic factors produced by Alternaria alternata in postharvest tomatoes. Journal of the American Society for Horticultural Science125(6), 742-747. https://doi.org/10.21273/JASHS.125.6.742
Sathiyabama, M., Akila, G., & Charles, R. E. (2014). Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Archives of Phytopathology and Plant Protection47(16), 1963-1973. https://doi.org/10.1080/03235408.2013.863497
Tahir, A., Shah, H., Sharif, M., Akhtar, W., & Akmal, N. (2012). An overview of tomato economy of Pakistan: comparative analysis. Pakistan Journal of Agricultural Research25(4), 288-294.
Taşdelen, Ö., & BAYINDIRLI, L. (1998). Controlled atmosphere storage and edible coating effects on storage life and quality of tomatoes. Journal of Food Processing and Preservation22(4), 303-320. http://dx.doi.org/10.1111/j.1745-4549.1998.tb00352.x
Troy, D. J., & Kerry, J. P. (2010). Consumer perception and the role of science in the meat industry. Meat Science86(1), 214-226. http://dx.doi.org/10.1016/j.meatsci.2010.05.009
Weisburger, J. H. (2002). Lycopene and tomato products in health promotion. Experimental Biology and Medicine227(10), 924-927. https://doi.org/10.1177/153537020222701014
Won, J. S., Lee, S. J., Park, H. H., Song, K. B., & Min, S. C. (2018). Edible coating using a chitosan‐based colloid incorporating grapefruit seed extract for cherry tomato safety and preservation. Journal of Food Science83(1), 138-146. http://dx.doi.org/10.1111/1750-3841.14002
Zapata, P. J., Guillén, F., Martínez‐Romero, D., Castillo, S., Valero, D., & Serrano, M. (2008). Use of alginate or zein as edible coatings to delay postharvest ripening process and to maintain tomato (Solanum lycopersicon Mill) quality. Journal of the Science of Food and Agriculture88(7), 1287-1293. http://dx.doi.org/10.1002/jsfa.3220
Zhuang, Y. R., & Huang, Y.W. (2003). Influence of hydroxypropyl methylcellulose edible coating on fresh-keeping and storability of tomato. Journal of Zhejiang University-SCIENCE A4(1), 109-113. http://dx.doi.org/10.1631/jzus.2003.0109