Al-Chaabi, S., Koutifani, O., Safeih, M.H., Sedawi, A., & Asmar, J. (2009). Management of root-knot nematodes and corky root disease of pepper plants by grafting technique onto resistant rootstocks under plastic house. Arab Gulf Journal of Scientific Research, 27(3), 178-186.
Álvarez-Hernández, J.C., Castellanos-Ramos, J.Z., Aguirre-Mancilla, C.L., Huitrón-Ramírez, M.V., & Camacho-Ferre, F. (2015). Influence of rootstocks on fusarium wilt, nematode infestation, yield and fruit quality in watermelon production.
Ciência e Agrotecnologia,
39(4), 323-330.
https://doi.org/10.1590/S1413-70542015000400002
Ashok, K.B., & Kumar, S. (2017). Grafting of vegetable crops as a tool to improve yield and tolerance against diseases- A review. International Journal of Agricultural Science, 9(13), 4050-4056.
Bekhradi, F., Kashi, A. & Delshad, M. (2011). Effect of three cucurbits rootstocks on vegetative and yield of 'Charleston Gray' watermelon. International Journal of Plant Production, 5(2), 105-110.
Cohen, R., Burger, Y., Horev, C., & Koren A. (2007). Introducing grafted cucurbits to modern agriculture: the Israeli experience.
Plant Disease,
91(8), 916-923.
https://doi.org/10.1094/PDIS-91-8-0916
Cohen, R., Burger, Y., Horev, C., Porat, A., & Edelstein, M. (2005). Performance of Galia‐type melons grafted on to Cucurbita rootstock in Monosporascus cannonballus‐infested and non‐infested soils.
Annals of Applied Biology, 146(3), 381-387.
https://doi.org/10.1111/j.1744-7348.2005.040010.x
Colla, G., Fiorillo, A., Cardarelli, M., & Rouphael Y. (2013). Grafting to improve abiotic stress tolerance of fruit vegetables. In: II International Symposium on Organic Greenhouse Horticulture
1041, 119-125.
https://doi.org/10.17660/ActaHortic.2014.1041.12
Colla, G., Rouphael, Y., Mirabelli, C., & Cardarelli, M. (2011). Nitrogen-use efficiency traits of mini-watermelon in response to grafting and nitrogen-fertilization doses.
Journal of Plant Nutrition and Soil Science, 174, 933-994.
https://doi.org/10.1002/jpln.201000325
Collonier, C., Fock, I., Kashyap, V., Rotino, G.L., Daunay, M. C., Lian, N., Mariska, L.K., Rajam, M.V., Seraes, A., Ducreux, G., & Sihachakr, D. (2001). Applications of biotechnology in eggplant.
Plant Cell Issue and Organ Culture,
65, 91-101.
https://doi.org/10.1023/A:1010674425536
Cortada, L., Sorribas, F.J., Ornat, C., Andrés, M.F., & Verdejo-Lucas, S. (2009). Response of tomato rootstocks carrying the Mi-resistance gene to populations of
Meloidogyne arenaria, M. incognita and
M. javanica.
European Journal of Plant Pathology,
124(2), 337-343.
https://doi.org/10.1007/s10658-008-9413-z
Çürük, S., Dasgan, H.Y., Mansuroglu, S., Kurt, S., Mazmanoglu, M., Antakli, Ö., & Tarla, G. (2009). Grafted eggplant yield, quality and growth in infested soil with Verticillium dahliae and Meloidogyne incognita.
Pesquisa Agropecuária Brasileira,
44(12), 1673-1681.
https://doi.org/10.1590/S0100-204X2009001200017
Davis, A.R., Perkins-Veazie, P., Sakata, Y., Lopez-Galarza, S., Maroto, J.V., Lee, S.G., Huh, Y.C., Sun, Z., Miguel, A., King, S.R., & Cohen, R. (2008). Cucurbit grafting.
Critical Reviews in Plant Sciences,
27(1), 50-74.
https://doi.org/10.1080/07352680802053940
Dhall, R.K. (2015). Breeding for biotic stresses resistance in vegetable crops: a review. Journal of Crop Science Technology, 4, 13-27.
Edelstein, M., Cohen, R., Burger, Y., Shriber, S., Pivonia, S., & Shtienberg, D. (1999). Integrated management of sudden wilt in melons, caused by Monosporascus cannonballus, using grafting and reduced rates of methyl bromide. Plant Disease, 83(12), 1142-1145.
Fan, J., Yang, R., Li, X., Zhao, F., & Wang, S. (2015). The processes of graft union formation in tomato.
Horticulture, Environment, and Biotechnology,
56, 569-574.
https://doi.org/10.1007/s13580-015-0009-1
Galatti, F.D.S., Franco, A.J., Ito, L.A., Charlo, H.D.O., Gaion, L.A., & Braz, L.T. (2013). Rootstocks resistant to
Meloidogyne incognita and compatibility of grafting in net melon.
Revista Ceres,
60(3), 432-436.
https://doi.org/10.1590/S0034-737X2013000300018
Garibaldi, A., Baudino, M., Minuto, A., & Gullino, M.L. (2008). Effectiveness of fumigants and grafting against tomato brown root rot caused by
Colletotrichum coccodes.
Phytoparasitica,
36(5), 483.
https://doi.org/10.1007/BF03020294
Gilardi, G., Gullino, M.L., & Garibaldi, A. (2010). Reaction of tomato rootstocks to selected soil-borne pathogens under artificial inoculation conditions. In: III International Symposium on Tomato Diseases
914, 345-348.
https://doi.org/10.17660/ActaHortic.2011.914.63
Gisbert, C., Prohens, J., & Nuez, F. (2011). Performance of eggplant grafted onto cultivated, wild, and hybrid materials of eggplant and tomato. International Journal of Plant Production, 5(4), 367-380.
Gousset, C., Collonnier, C., Mulya, K., Mariska, I., Rotino, G.L., Besse, P., Servaes, A., & Sihachakr, D. (2005). Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (
S. melongena L.).
Plant Science,
168(2), 319-327.
https://doi.org/10.1016/j.plantsci.2004.07.034
Gu, X., & Zhang, S. (2006). The screening of cucumber rootstocks resistant to southern root-knot nematode. China Vegetables, 2, 4-8.
Hasama, W., Morita, S., & Kato, T. (1993). Reduction of resistance to Corynespora target leaf spot in cucumber grafted on a bloomless rootstock.
Japanese Journal of Phytopathology,
59(3), 243-248.
https://doi.org/10.3186/jjphytopath.59.243
Hasna, M.K., Ögren, E., Persson, P., Mårtensson, A., & Rämert, B. (2009). Management of corky root disease of tomato in participation with organic tomato growers.
Crop Protection,
28(2), 155-161.
https://doi.org/10.1016/j.cropro.2008.09.011
Huitrón-Ramírez, M.V., Ricárdez-Salinas, M., & Camacho-Ferre, F. (2009). Influence of grafted watermelon plant density on yield and quality in soil infested with melon necrotic spot virus.
HortScience,
44(7), 1838-1841.
https://doi.org/10.21273/HORTSCI.44.7.1838
Jabnoun-Khiareddine, H., Abdallah, R.A.B., Nefzi, A., Ayed, F., & Daami-Remadi, M. (2019). Grafting tomato cultivars for soilborne disease suppression and plant growth and yield improvement. Journal of Plant Pathology and Microbiology, 10, 1-473.
Jang, Y., Yang, E., Cho, M., Um, Y., Ko, K., & Chun, C. (2012). Effect of grafting on growth and incidence of Phytophthora blight and bacterial wilt of pepper (
Capsicum annuum L.).
Horticulture, Environment, and Biotechnology,
53(1), 9-19.
https://doi.org/10.1007/s13580-012-0074-7
Johnson, S., Inglis, D., & Miles, C. (2014). Grafting effects on eggplant growth, yield, and verticillium wilt incidence.
International Journal of Vegetable Science,
20(1), 3-20.
https://doi.org/10.1080/19315260.2012.751473
Kacjan Maršić, N., Mikulič-Petkovšek, M., & Stampar, F. (2014). Grafting influences phenolic profile and carpometric traits of fruits of greenhouse-grown eggplant (
Solanum melongena L.).
Journal of Agricultural and Food Chemistry,
62(43), 10504-10514.
https://doi.org/10.1021/jf503338m
Kawaguchi, M., Taji, A., Backhouse, D., & Oda, M. (2008). Anatomy and physiology of graft incompatibility in solanaceous plants.
The Journal of Horticultural Science and Biotechnology,
83(5), 581-588.
https://doi.org/10.1080/14620316.2008.11512427
Keinath, A.P., & Hassell, R.L. (2014). Control of Fusarium wilt of watermelon by grafting onto bottlegourd or interspecific hybrid squash despite colonization of rootstocks by Fusarium.
Plant Disease,
98(2), 255-266.
https://doi.org/10.1094/PDIS-01-13-0100-RE
Keinath, A.P. (2013). Susceptibility of cucurbit rootstocks to
Didymella bryoniae and control of gummy stem blight on grafted watermelon seedlings with fungicides.
Plant Disease,
97(8), 1018-1024.
https://doi.org/10.1094/PDIS-12-12-1133-RE
King, S.R., Davis, A.R., Zhang, X., & Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae.
Scientia Horticulturae,
127(2), 106-111.
https://doi.org/10.1016/j.scienta.2010.08.001
Kobayashi, K. (2005). Vegetable grafting robot. Research Journal of Food and Agriculture, 28,15-20.
Kokalis-Burelle, N., & Rosskopf, E.N. (2011). Microplot evaluation of rootstocks for control of Meloidogyne incognita on grafted tomato, muskmelon, and watermelon. Journal of Nematology, 43(3-4), 166.
Kousik, C.S., Mandal, M., & Hassell, R. (2018). Powdery mildew resistant rootstocks that impart tolerance to grafted susceptible watermelon scion seedlings.
Plant Disease,
102(7), 1290-1298.
https://doi.org/10.1094/PDIS-09-17-1384-RE
Kousik, C.S., & Thies, J. A. (2010). Response of US bottle gourd (Lagenaria siceraria) plant introductions (PI) to crown rot caused by Phytophthora capsici. Phytopathology, 100, 65.
Kubota, C., Meng, C., Son, Y.J., Lewis, M., Spalholz, H., & Tronstad, R. (2017). Horticultural, systems-engineering and economic evaluations of short-term plant storage techniques as a labor management tool for vegetable grafting nurseries.
PLoS ONE,
12, 1706-1714.
https://doi.org/10.1371/journal.pone.0170614
Kubota, C., Mcclure, M.A., Kokalis-Burelle, N., Bausher, M.G., & Rosskopf. E.N. (2008). Vegetable grafting: History, use, and current technology status in North America.
HortScience,
43(6), 1664-1669.
https://doi.org/10.21273/HORTSCI.43.6.1664
Lee, J.M., Kubota, C., Tsao, S.J., Bie, Z., Echevarria, P.H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: diffusion, grafting techniques, automation.
Scientia Horticulturae,
127, 93-105.
https://doi.org/10.1016/j.scienta.2010.08.003
Lee, J.M., & Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops, 61-124. In: Janick, J. (ed.). Horticultural reviews. Vol. 28. John Wiley & Sons, New York, NY.
https://doi.org/10.1002/9780470650851.ch2
Leonardi, C. (2016). Vegetable grafting tour introduction. University of Catania, Sicily, Italy, 23.
Ling, N., Zhang, W., Wang, D., Mao, J., Huang, Q., Guo, S., & Shen, Q. (2013). Root exudates from grafted-root watermelon showed a certain contribution in inhibiting
Fusarium oxysporum f. sp. niveum.
PLoS ONE,
8, e63383.
https://doi.org/10.1371/journal.pone.0063383
Liu, F., Hewezi, T., Lebeis, S.L., Pantalone, V., Grewal, P.S., & Staton, M.E. (2019). Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly.
BMC Microbiology,
19(1), 1-19.
https://doi.org/10.1186/s12866-019-1572-x
Liu, S., Li, H., Lv, X., Ahammed, G.J., Xia, X., Zhou, J., Shi, K., Asami, T., Yu, J., & Zhou, Y. (2016). Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity.
Scientific Reports,
6, 202-212.
https://doi.org/10.1038/srep20212
Louws, F.J., Rivard, C.L., Kubota, C. (2010). Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds.
Scientia Horticulturae,
127(2), 127-146.
https://doi.org/10.1016/j.scienta.2010.09.023
Mahmoud, A. (2014). Grafting as a tool to improve TYLCV-Tolerance in tomato. Journal of Horticultural Science & Ornamental Plants, 6(3), 109-115.
Mohamed, F.H., El-Hamed, K.E.A., Elwan, M.W.M., & Hussien, M.N.E. (2014). Evaluation of different grafting methods and rootstocks in watermelon grown in Egypt.
Scientia Horticulturae, 168, 145-150.
https://doi.org/10.1016/j.scienta.2014.01.029
Morra, L. (2004). Grafting in vegetable crops. In: Tognoni, F., Pardossi, A., Mensuali, S.A., Dimauro, B. (ed.) The production in the greenhouse after the era of the methyl bromide. Comiso, Italy, 147-154.
NARO. (2011). Current status and issues of vegetable grafting. National Agricultural Research Organization. Research Institute of Vegetable and Tea, 147.
Nemati, Z., & Banihashemi, Z. (2015). Reaction of different Cucurbita species to Phytophthora capsici, P. melonis and P. drechsleri under greenhouse conditions. Journal of Crop Protection, 4(20), 705-709.
Nisini, P.T., Colla, G., Granati, E., Temperini, O., Crino, P., & Saccardo, F. (2002). Rootstock resistance to fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars.
Scientia Horticulturae,
93(3-4), 281-288.
https://doi.org/10.1016/S0304-4238(01)00335-1
Oda, M. (2002). Grafting of vegetable crops. Scientific report of the graduate school of agriculture and biological sciences, Osaka Prefecture University, 54, 49-72.
Oda, M. (1999). Grafting of vegetables to improve greenhouse production. Food & Fertilizer Technology Center Extension Bulletin 480, 1-11.
Oka, Y., Offenbach, R., & Pivonia, S. (2004). Pepper rootstock graft compatibility and response to Meloidogyne javanica and M. incognita. Journal of Nematology, 36,137-141.
Oumouloud, A., Arnedo-Andrés, M.S., González-Torres, R., & Alvarez, J.M. (2010). Inheritance of resistance to Fusarium oxysporum f. sp. melonis races 0 and 2 in melon accession Tortuga.
Euphytica,
176(2), 183-189.
https://doi.org/10.1007/s10681-010-0201-4
Owusu, S.B., Kwoseh, C.K., Starr, J.L., & Davies, F.T. (2016). Grafting for management of root-knot nematodes, Meloidogyne incognita, in tomato (Solanum lycopersicum L.). Nematropica, 46(1), 14-21.
Paplomatas, E.J., Elena, K., Tsagkarakou, A., & Perdikaris, A. (2000). Control of Verticillium wilt of tomato and cucurbits through grafting of commercial varieties on resistant rootstocks. In: II Balkan Symposium on Vegetables and Potatoes
, 579, 445-449.
https://doi.org/10.17660/ActaHortic.2002.579.77
Park, D.K., Son, S.H., Kim, S., Lee, W.M., Lee, H.J., Choi, H.S., Yang, E.Y., Chae, W.B., Ko, H.C., & Huh, Y.C. (2013). Selection of melon genotypes with resistance to Fusarium wilt and Monosporascus root rot for rootstocks.
Plant Breeding and Biotechnology,
1(3), pp.277-282.
https://doi.org/10.9787/PBB.2013.1.3.277
Passam, H.C. (2003). Use of grafting makes a comeback. Fruit and Vegetable Technology, 3, 7-9.
Pech, J.C., Bouzayen, M., & Latché, A. (2008). Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit.
Plant Science,
175, 114-120.
https://doi.org/10.1016/j.plantsci.2008.01.003
Polizzi, G., Guarnaccia, V., Vitale, A., Marra, M., Rocco, M., Arena, S., Scaloni, A., Giuffrida, F., Cassaniti, C., & Leonardi, C. (2015). Scion/rootstock interaction and tolerance expression of tomato to FORL. In: International Symposium on Vegetable Grafting,
1086, 189-194.
https://doi.org/10.17660/ActaHortic.2015.1086.23
Poudel, R., Jumpponen, A., Kennelly, M.M., Rivard, C.L., Gomez-Montano, L., & Garrett, K.A. (2019). Rootstocks shape the rhizobiome: Rhizosphere and endosphere bacterial communities in the grafted tomato system.
Applied and Environmental Microbiology,
85(2), e01765-18.
https://doi.org/10.1128/AEM.01765-18
Raaijmakers, J.M., Paulitz, T.C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms.
Plant and Soil,
321(1-2), 341-361.
https://doi.org/10.1007/s11104-008-9568-6
Rivard, C.L., & Louws, F.J. (2011). Tomato grafting for disease resistance and increased productivity. Sustainable Agr. Res. Educ.(SARE) Factsheet GS05-046.
Rivard, C.L., O'connell, S., Peet, M.M., Welker, R.M., & Louws, F.J. (2012). Grafting tomato to manage bacterial wilt caused by Ralstonia solanacearum in the southeastern United States.
Plant Disease,
96(7), 973-978.
https://doi.org/10.1094/PDIS-12-10-0877
Röös, E., Bajželj, B., Smith, P., Patel, M., Little, D., & Garnett, T. (2017). Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures.
Global Environmental Change,
47, 1-12.
https://doi.org/10.1016/j.gloenvcha.2017.09.001
Sakata, Y., Ohara, T., & Sugiyama, M. (2008). The history of melon and cucumber grafting in Japan. In: Prange, R.K., Bishop, S.D. (ed.), Proceedings of XXVII IHC-S11 sustainability through integrated and organic horticulture.
Acta Horticulturae, 767, 217-228.
https://doi.org/10.17660/ActaHortic.2008.767.22
Santos, H.S., & Goto, R. (2004). Sweet pepper grafting to control phytophthora blight under protected ultivation. Horticultura Brasileira, 22, 45-49.
Sarswat, S., & Kumar, P. (2019). Standardization of robotic grafting in bell pepper for horticultural and quality traits. Dissertation. CSK Himachal Pradesh Agricultural University, Palampur, India.
Schwarz, D., Beuch, U., Bandte, M., Fakhro, A., Büttner, C., & Obermeier, C. (2010). Spread and interaction of Pepino mosaic virus (PepMV) and Pythium aphanidermatum in a closed nutrient solution recirculation system: effects on tomato growth and yield.
Plant Pathology,
59(3), 443-452.
https://doi.org/10.1111/j.1365-3059.2009.02229.x
Schwarz, D., Rouphael, Y., Colla, G., & Venema, J.H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants.
Scientia Horticulturae,
127, 162-171.
https://doi.org/10.1016/j.scienta.2010.09.016
Schwarz, D., Rouphael, Y., Colla, G., Venema, J.H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants.
Scientia Horticulturae, 127(2), 162-171.
https://doi.org/10.1016/j.scienta.2010.09.016
Shishido, M. (2014). Black root rot caused by Diaporthe sclerotioides threatens cucurbit cultivation in Japan. Advances in Horticultural Science, 208-213.
Siamak, S.B., & Paolo, S. (2019). Responses of grafted watermelon onto
Cucurbita pepo Tiana F1 hybrid to boron nutritional disorders.
Horticultural Plant Journal,
5(5), 213-220.
https://doi.org/10.1016/j.hpj.2019.07.003
Sigüenza, C., Schochow, M., Turini, T., Ploeg, A. (2005). Use of Cucumis metuliferus as a rootstock for melon to manage Meloidogyne incognita. Journal of Nematology, 37(3), 276.
Spanò, R., Mascia, T., Kormelink, R., Gallitelli, D. (2015). Grafting on a non-transgenic tolerant tomato variety confers resistance to the infection of a sw5-breaking strain of tomato spotted wilt virus via RNA silencing.
PLoS ONE,
10(10), p.e0141319.
https://doi.org/10.1371/journal.pone.0141319
Thies, J.A., Ariss, J.J., Hassell, R.L., Olson, S., Kousik, C.S., & Levi, A. (2010). Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon.
Plant Disease,
94(10), 1195-1199.
https://doi.org/10.1094/PDIS-09-09-0640
Traka-Mavrona, E., Koutsika-Sotiriou, M., Pritsa, T. (2000). Response of squash (Cucurbita spp.) as rootstock for melon (
Cucumis melo L.).
Scientia Horticulturae,
83(3-4), 353-362.
https://doi.org/10.1016/S0304-4238(99)00088-6.
Ventura JA, Lima IDM, Martins MVV, Culik MP, Costa H. (2019). Impact and management of diseases in the propagation of fruit plants.
Revista Brasileira de Fruticultura,
41(4), 647.
https://doi.org/10.1590/0100-29452019647
Vitale, A., Rocco, M., Arena, S., Giuffrida, F., Cassaniti, C., Scaloni, A., Lomaglio, T., Guarnaccia, V., Polizzi, G., Marra, M., & Leonardi, C. (2014). Tomato susceptibility to Fusarium crown and root rot: Effect of grafting combination and proteomic analysis of tolerance expression in the rootstock.
Plant Physiology and Biochemistry,
83, 207-216.
https://doi.org/10.1016/j.plaphy.2014.08.006
Wang, J., Zhang, D., & Fang, Q. (2002). Studies on antivirus disease mechanism of grafted seedless watermelon. Journal of Anhui Agricultural College, 29(4), 336-339.
Wilson, H.P., Kuhar, T.P., Rideout, S.L., & et al. (2012) Virginia Commercial Vegetable Production Recommendations. Verginia State University, p 191.
Yassin, H., & Hussen, S. (2015). Review on role of grafting on yield and quality of selected fruit vegetables. Global Journal of Science Research, 15, 1-15.
Yetisir, H., & Sari, N. (2003). Effect of different rootstock on plant growth, yield and quality of watermelon.
Australian Journal of Experimental Agriculture,
43, 1269-1274.
https://doi.org/10.1071/EA02095
Yin, Y., Zhou, B., & Li, Y. (2009). Effects of grafting on rhizosphere microorganisms of eggplants. Allelopathy Journal, 23(1), 149-156.
Zhang, S., Gu, X., & Wang, Y. (2006). Effect of bur cucumber (Sicyos angulatus L.) as rootstock on growth physiology and stress resistance of cucumber plants. Acta Horticulturae Sinica, 33(6), 1231-1236.
Zhou, X., Wu, Y., Chen, S., Chen, Y., Zhang, W., Sun, X., Zhao, Y. (2014). Using Cucurbita rootstocks to reduce fusarium wilt incidence and increase fruit yield and carotenoid content in oriental melons.
HortScience,
49(11), 1365-1369.
https://doi.org/10.21273/HORTSCI.49.11.1365