Document Type : Review Article

Authors

1 Department of Genetics & Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

2 Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh

3 Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh

Abstract

Purpose: To increase yield and quality of fruit vegetables under high pressure of soil-borne pathogens, nematode, and unfavorable environments introducing vegetable grafting in agriculture are crucial. It also helps to reduce disease susceptibility and to increase tolerance against abiotic stresses.  Findings: Grafting in vegetables is a centuries-old practice to improve yield through organic culture. It was introduced in USA and becoming more common in organic farming of vegetables. Vegetable grafting is popular practice in many European and North American countries, Japan, Korea, and China. Vegetable crops are exposed to many abiotic and biotic stress factors, including salinity, heat, heavy metals, excess trace elements, diseases, and pests, which have a significant effect on crop growth and productivity. Grafting is effective practices in solanaceous and cucurbitaceous vegetables to control soil-borne diseases including; Verticillium wilt, Fusarium wilt, and bacterial wilt, and nematodes without using pesticides. Limitations: Despite of its numerous benefits, there are several difficulties associated with grafting which include added cost, graft mismatch, physiological complaints, and reductions in flower formation, quality, and yield of fruit. Directions for future research: Appropriate selection of scion and rootstock, scion–rootstock communication, and the reciprocal effect of the shoot and root system should be considered to get maximum benefits from this novel technique. New research should be conducted to evaluate and test diverse germplasm as a source of the viable rootstock, development of grafting tools ideal for the stable, year-round, and cost-effective yield.

Keywords

Main Subjects

Al-Chaabi, S., Koutifani, O., Safeih, M.H., Sedawi, A., & Asmar, J. (2009). Management of root-knot nematodes and corky root disease of pepper plants by grafting technique onto resistant rootstocks under plastic house. Arab Gulf Journal of Scientific Research, 27(3), 178-186.
Álvarez-Hernández, J.C., Castellanos-Ramos, J.Z., Aguirre-Mancilla, C.L., Huitrón-Ramírez, M.V., & Camacho-Ferre, F. (2015). Influence of rootstocks on fusarium wilt, nematode infestation, yield and fruit quality in watermelon production. Ciência e Agrotecnologia, 39(4), 323-330. https://doi.org/10.1590/S1413-70542015000400002
Arefin, S.M., Zeeba, N., & Solaiman, A.H. (2019). Evaluation of compatibility, growth characteristics and yield of tomato grafted on potato (Pomato). Horticulturae, 5(2), 37. https://doi.org/10.3390/horticulturae5020037
Ashok, K.B., & Kumar, S. (2017). Grafting of vegetable crops as a tool to improve yield and tolerance against diseases- A review. International Journal of Agricultural Science, 9(13), 4050-4056.
Bachman, M.S., & Nickell, C.D. (1999). Use of reciprocal grafting to study brown stem rot resistance in soybean. Phytopathology, 89(1), 59-63. https://doi.org/10.1094/PHYTO.1999.89.1.59
Bekhradi, F., Kashi, A. & Delshad, M. (2011). Effect of three cucurbits rootstocks on vegetative and yield of 'Charleston Gray' watermelon. International Journal of Plant Production, 5(2), 105-110.
Bhatti, A.A., Haq, S., & Bhat, R.A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis, 111, 458-467. https://doi.org/10.1016/j.micpath.2017.09.036
Bletsos, F., Thanassoulopoulos, C., & Roupakias, D. (2003). Effect of grafting on growth, yield, and Verticillium wilt of eggplant. HortScience, 38(2), 183-186. https://doi.org/10.21273/HORTSCI.38.2.183
Cohen, R., Burger, Y., Horev, C., & Koren A. (2007). Introducing grafted cucurbits to modern agriculture: the Israeli experience. Plant Disease, 91(8), 916-923. https://doi.org/10.1094/PDIS-91-8-0916
Cohen, R., Burger, Y., Horev, C., Porat, A., & Edelstein, M. (2005). Performance of Galia‐type melons grafted on to Cucurbita rootstock in Monosporascus cannonballus‐infested and non‐infested soils. Annals of Applied Biology, 146(3), 381-387. https://doi.org/10.1111/j.1744-7348.2005.040010.x
Colla, G., Fiorillo, A., Cardarelli, M., & Rouphael Y. (2013). Grafting to improve abiotic stress tolerance of fruit vegetables. In: II International Symposium on Organic Greenhouse Horticulture 1041, 119-125. https://doi.org/10.17660/ActaHortic.2014.1041.12
Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2), 147-155. https://doi.org/10.1016/j.scienta.2010.08.004
Colla, G., Rouphael, Y., Mirabelli, C., & Cardarelli, M. (2011). Nitrogen-use efficiency traits of mini-watermelon in response to grafting and nitrogen-fertilization doses. Journal of Plant Nutrition and Soil Science, 174, 933-994. https://doi.org/10.1002/jpln.201000325
Collonier, C., Fock, I., Kashyap, V., Rotino, G.L., Daunay, M. C., Lian, N., Mariska, L.K., Rajam, M.V., Seraes, A., Ducreux, G., & Sihachakr, D. (2001). Applications of biotechnology in eggplant. Plant Cell Issue and Organ Culture, 65, 91-101. https://doi.org/10.1023/A:1010674425536
Comba, L., Gay, P., & Aimonino, D.R. (2016). Robot ensembles for grafting herbaceous crop. Biosystems Engineering, 146, 227-239. https://doi.org/10.1016/j.biosystemseng.2016.02.012
Cortada, L., Sorribas, F.J., Ornat, C., Andrés, M.F., & Verdejo-Lucas, S. (2009). Response of tomato rootstocks carrying the Mi-resistance gene to populations of Meloidogyne arenaria, M. incognita and M. javanica. European Journal of Plant Pathology, 124(2), 337-343. https://doi.org/10.1007/s10658-008-9413-z
Çürük, S., Dasgan, H.Y., Mansuroglu, S., Kurt, S., Mazmanoglu, M., Antakli, Ö., & Tarla, G.  (2009). Grafted eggplant yield, quality and growth in infested soil with Verticillium dahliae and Meloidogyne incognita. Pesquisa Agropecuária Brasileira, 44(12), 1673-1681. https://doi.org/10.1590/S0100-204X2009001200017
Davis, A.R., Perkins-Veazie, P., Sakata, Y., Lopez-Galarza, S., Maroto, J.V., Lee, S.G., Huh, Y.C., Sun, Z., Miguel, A., King, S.R., & Cohen, R. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50-74. https://doi.org/10.1080/07352680802053940
Dhall, R.K. (2015). Breeding for biotic stresses resistance in vegetable crops: a review. Journal of Crop Science Technology, 4, 13-27.
Edelstein, M., Cohen, R., Burger, Y., Shriber, S., Pivonia, S., & Shtienberg, D. (1999). Integrated management of sudden wilt in melons, caused by Monosporascus cannonballus, using grafting and reduced rates of methyl bromide. Plant Disease, 83(12), 1142-1145.
Fan, J., Yang, R., Li, X., Zhao, F., & Wang, S. (2015). The processes of graft union formation in tomato. Horticulture, Environment, and Biotechnology, 56, 569-574. https://doi.org/10.1007/s13580-015-0009-1
Gaion, L.A., Braz, L.T., & Carvalho, R.F. (2018). Grafting in vegetable crops: A great technique for agriculture. International Journal of Vegetable Science, 24(1), 85-102. https://doi.org/10.1080/19315260.2017.1357062
Galatti, F.D.S., Franco, A.J., Ito, L.A., Charlo, H.D.O., Gaion, L.A., & Braz, L.T. (2013). Rootstocks resistant to Meloidogyne incognita and compatibility of grafting in net melon. Revista Ceres, 60(3), 432-436. https://doi.org/10.1590/S0034-737X2013000300018
Garibaldi, A., Baudino, M., Minuto, A., & Gullino, M.L. (2008). Effectiveness of fumigants and grafting against tomato brown root rot caused by Colletotrichum coccodes. Phytoparasitica, 36(5), 483. https://doi.org/10.1007/BF03020294
Gilardi, G., Gullino, M.L., & Garibaldi, A. (2010). Reaction of tomato rootstocks to selected soil-borne pathogens under artificial inoculation conditions. In: III International Symposium on Tomato Diseases 914, 345-348. https://doi.org/10.17660/ActaHortic.2011.914.63
Gisbert, C., Prohens, J., & Nuez, F. (2011). Performance of eggplant grafted onto cultivated, wild, and hybrid materials of eggplant and tomato. International Journal of Plant Production, 5(4), 367-380.
Goldschmidt, E.E. (2014). Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 5, 727. https://doi.org/10.3389/fpls.2014.00727
Gousset, C., Collonnier, C., Mulya, K., Mariska, I., Rotino, G.L., Besse, P., Servaes, A., & Sihachakr, D. (2005). Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Science, 168(2), 319-327. https://doi.org/10.1016/j.plantsci.2004.07.034
Gu, X., & Zhang, S. (2006). The screening of cucumber rootstocks resistant to southern root-knot nematode. China Vegetables, 2, 4-8.
Guan, W., Zhao, X., Hassell, R., & Thies, J. (2012). Defense mechanisms involved in disease resistance of grafted vegetables. HortScience, 47(2), 164-170. https://doi.org/10.21273/HORTSCI.47.2.164
Hasama, W., Morita, S., & Kato, T. (1993). Reduction of resistance to Corynespora target leaf spot in cucumber grafted on a bloomless rootstock. Japanese Journal of Phytopathology, 59(3), 243-248. https://doi.org/10.3186/jjphytopath.59.243
Hasna, M.K., Ögren, E., Persson, P., Mårtensson, A., & Rämert, B. (2009). Management of corky root disease of tomato in participation with organic tomato growers. Crop Protection, 28(2), 155-161. https://doi.org/10.1016/j.cropro.2008.09.011
Huitrón-Ramírez, M.V., Ricárdez-Salinas, M., & Camacho-Ferre, F. (2009). Influence of grafted watermelon plant density on yield and quality in soil infested with melon necrotic spot virus. HortScience, 44(7), 1838-1841. https://doi.org/10.21273/HORTSCI.44.7.1838
Jabnoun-Khiareddine, H., Abdallah, R.A.B., Nefzi, A., Ayed, F., & Daami-Remadi, M. (2019). Grafting tomato cultivars for soilborne disease suppression and plant growth and yield improvement. Journal of Plant Pathology and Microbiology, 10, 1-473.
Jang, Y., Yang, E., Cho, M., Um, Y., Ko, K., & Chun, C. (2012). Effect of grafting on growth and incidence of Phytophthora blight and bacterial wilt of pepper (Capsicum annuum L.). Horticulture, Environment, and Biotechnology, 53(1), 9-19. https://doi.org/10.1007/s13580-012-0074-7
Johnson, S., Inglis, D., & Miles, C. (2014). Grafting effects on eggplant growth, yield, and verticillium wilt incidence. International Journal of Vegetable Science, 20(1), 3-20. https://doi.org/10.1080/19315260.2012.751473
Kacjan Maršić, N., Mikulič-Petkovšek, M., & Stampar, F. (2014). Grafting influences phenolic profile and carpometric traits of fruits of greenhouse-grown eggplant (Solanum melongena L.). Journal of Agricultural and Food Chemistry, 62(43), 10504-10514. https://doi.org/10.1021/jf503338m
Kawaguchi, M., Taji, A., Backhouse, D., & Oda, M. (2008). Anatomy and physiology of graft incompatibility in solanaceous plants. The Journal of Horticultural Science and Biotechnology, 83(5), 581-588. https://doi.org/10.1080/14620316.2008.11512427
Keinath, A.P., & Hassell, R.L. (2014). Control of Fusarium wilt of watermelon by grafting onto bottlegourd or interspecific hybrid squash despite colonization of rootstocks by Fusarium. Plant Disease, 98(2), 255-266. https://doi.org/10.1094/PDIS-01-13-0100-RE
Keinath, A.P. (2013). Susceptibility of cucurbit rootstocks to Didymella bryoniae and control of gummy stem blight on grafted watermelon seedlings with fungicides. Plant Disease, 97(8), 1018-1024. https://doi.org/10.1094/PDIS-12-12-1133-RE
King, S.R., Davis, A.R., Zhang, X., & Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2), 106-111.     https://doi.org/10.1016/j.scienta.2010.08.001
Kobayashi, K. (2005). Vegetable grafting robot. Research Journal of Food and Agriculture, 28,15-20.
Kokalis-Burelle, N., & Rosskopf, E.N. (2011). Microplot evaluation of rootstocks for control of Meloidogyne incognita on grafted tomato, muskmelon, and watermelon. Journal of Nematology, 43(3-4), 166.
Kousik, C.S., Mandal, M., & Hassell, R. (2018). Powdery mildew resistant rootstocks that impart tolerance to grafted susceptible watermelon scion seedlings. Plant Disease, 102(7), 1290-1298. https://doi.org/10.1094/PDIS-09-17-1384-RE
Kousik, C.S., & Thies, J. A. (2010). Response of US bottle gourd (Lagenaria siceraria) plant introductions (PI) to crown rot caused by Phytophthora capsici. Phytopathology, 100, 65.
Kubota, C., Meng, C., Son, Y.J., Lewis, M., Spalholz, H., & Tronstad, R. (2017). Horticultural, systems-engineering and economic evaluations of short-term plant storage techniques as a labor management tool for vegetable grafting nurseries. PLoS ONE, 12, 1706-1714. https://doi.org/10.1371/journal.pone.0170614
Kubota, C., Mcclure, M.A., Kokalis-Burelle, N., Bausher, M.G., & Rosskopf. E.N. (2008). Vegetable grafting: History, use, and current technology status in North America. HortScience, 43(6), 1664-1669. https://doi.org/10.21273/HORTSCI.43.6.1664
Lee, J.M. (1994). Cultivation of Grafted Vegetables I. Current status, grafting methods, and benefits. HortScience, 29(4), 235-239. https://doi.org/10.21273/HORTSCI.29.4.235
Lee, J.M., Kubota, C., Tsao, S.J., Bie, Z., Echevarria, P.H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: diffusion, grafting techniques, automation. Scientia Horticulturae, 127, 93-105. https://doi.org/10.1016/j.scienta.2010.08.003
Lee, J.M., & Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops, 61-124. In: Janick, J. (ed.). Horticultural reviews. Vol. 28. John Wiley & Sons, New York, NY. https://doi.org/10.1002/9780470650851.ch2
Leonardi, C. (2016). Vegetable grafting tour introduction. University of Catania, Sicily, Italy, 23.
Ling, N., Zhang, W., Wang, D., Mao, J., Huang, Q., Guo, S., & Shen, Q. (2013). Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS ONE, 8, e63383. https://doi.org/10.1371/journal.pone.0063383
Liu, F., Hewezi, T., Lebeis, S.L., Pantalone, V., Grewal, P.S., & Staton, M.E. (2019). Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiology, 19(1), 1-19. https://doi.org/10.1186/s12866-019-1572-x
Liu, S., Li, H., Lv, X., Ahammed, G.J., Xia, X., Zhou, J., Shi, K., Asami, T., Yu, J., & Zhou, Y. (2016). Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Scientific Reports, 6, 202-212. https://doi.org/10.1038/srep20212
Louws, F.J., Rivard, C.L., Kubota, C. (2010). Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Scientia Horticulturae, 127(2), 127-146. https://doi.org/10.1016/j.scienta.2010.09.023
Mahmoud, A. (2014). Grafting as a tool to improve TYLCV-Tolerance in tomato. Journal of Horticultural Science & Ornamental Plants, 6(3), 109-115.
Miles, C, Wimer, J., & Inglis, D. (2015). Grafting eggplant and tomato for Verticillium wilt resistance. In: I International Symposium on Vegetable Grafting, 1086, 113-118. https://doi.org/10.17660/ActaHortic.2015.1086.13
Mohamed, F.H., El-Hamed, K.E.A., Elwan, M.W.M., & Hussien, M.N.E. (2014). Evaluation of different grafting methods and rootstocks in watermelon grown in Egypt. Scientia Horticulturae, 168, 145-150. https://doi.org/10.1016/j.scienta.2014.01.029
Morra, L. (2004). Grafting in vegetable crops. In: Tognoni, F., Pardossi, A., Mensuali, S.A., Dimauro, B. (ed.) The production in the greenhouse after the era of the methyl bromide. Comiso, Italy, 147-154.
Nakaho, K., Hibino, H., Miyagawa, H. (2000). Possible mechanisms limiting movement of Ralstonia solanacearum in resistant tomato tissues. Journal of Phytopathology, 148(3), 181-190.     https://doi.org/10.1046/j.1439-0434.2000.00476.x
NARO. (2011). Current status and issues of vegetable grafting. National Agricultural Research Organization. Research Institute of Vegetable and Tea, 147.
Nemati, Z., & Banihashemi, Z. (2015). Reaction of different Cucurbita species to Phytophthora capsici, P. melonis and P. drechsleri under greenhouse conditions. Journal of Crop Protection, 4(20), 705-709.
Nisini, P.T., Colla, G., Granati, E., Temperini, O., Crino, P., & Saccardo, F. (2002). Rootstock resistance to fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Scientia Horticulturae, 93(3-4), 281-288. https://doi.org/10.1016/S0304-4238(01)00335-1
Oda, M. (2002). Grafting of vegetable crops. Scientific report of the graduate school of agriculture and biological sciences, Osaka Prefecture University, 54, 49-72.
Oda, M. (1999). Grafting of vegetables to improve greenhouse production. Food & Fertilizer Technology Center Extension Bulletin 480, 1-11.
Oka, Y., Offenbach, R., & Pivonia, S. (2004). Pepper rootstock graft compatibility and response to Meloidogyne javanica and M. incognita. Journal of Nematology, 36,137-141.
Oumouloud, A., Arnedo-Andrés, M.S., González-Torres, R., & Alvarez, J.M. (2010). Inheritance of resistance to Fusarium oxysporum f. sp. melonis races 0 and 2 in melon accession Tortuga. Euphytica, 176(2), 183-189. https://doi.org/10.1007/s10681-010-0201-4
Owusu, S.B., Kwoseh, C.K., Starr, J.L., & Davies, F.T. (2016). Grafting for management of root-knot nematodes, Meloidogyne incognita, in tomato (Solanum lycopersicum L.). Nematropica, 46(1), 14-21.
Paplomatas, E.J., Elena, K., Tsagkarakou, A., & Perdikaris, A. (2000). Control of Verticillium wilt of tomato and cucurbits through grafting of commercial varieties on resistant rootstocks. In: II Balkan Symposium on Vegetables and Potatoes, 579, 445-449. https://doi.org/10.17660/ActaHortic.2002.579.77
Park, D.K., Son, S.H., Kim, S., Lee, W.M., Lee, H.J., Choi, H.S., Yang, E.Y., Chae, W.B., Ko, H.C., & Huh, Y.C. (2013). Selection of melon genotypes with resistance to Fusarium wilt and Monosporascus root rot for rootstocks. Plant Breeding and Biotechnology, 1(3), pp.277-282. https://doi.org/10.9787/PBB.2013.1.3.277
Passam, H.C. (2003). Use of grafting makes a comeback. Fruit and Vegetable Technology, 3, 7-9.
Pech, J.C., Bouzayen, M., & Latché, A. (2008). Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Science, 175, 114-120. https://doi.org/10.1016/j.plantsci.2008.01.003
Polizzi, G., Guarnaccia, V., Vitale, A., Marra, M., Rocco, M., Arena, S., Scaloni, A., Giuffrida, F., Cassaniti, C., & Leonardi, C. (2015). Scion/rootstock interaction and tolerance expression of tomato to FORL. In: International Symposium on Vegetable Grafting, 1086, 189-194. https://doi.org/10.17660/ActaHortic.2015.1086.23
Poudel, R., Jumpponen, A., Kennelly, M.M., Rivard, C.L., Gomez-Montano, L., & Garrett, K.A. (2019). Rootstocks shape the rhizobiome: Rhizosphere and endosphere bacterial communities in the grafted tomato system. Applied and Environmental Microbiology, 85(2), e01765-18. https://doi.org/10.1128/AEM.01765-18
Raaijmakers, J.M., Paulitz, T.C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321(1-2), 341-361. https://doi.org/10.1007/s11104-008-9568-6
Rivard, C.L., & Louws, F.J. (2011). Tomato grafting for disease resistance and increased productivity. Sustainable Agr. Res. Educ.(SARE) Factsheet GS05-046.
Rivard, C.L., O'connell, S., Peet, M.M., Welker, R.M., & Louws, F.J. (2012). Grafting tomato to manage bacterial wilt caused by Ralstonia solanacearum in the southeastern United States. Plant Disease, 96(7), 973-978. https://doi.org/10.1094/PDIS-12-10-0877
Röös, E., Bajželj, B., Smith, P., Patel, M., Little, D., & Garnett, T. (2017). Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Global Environmental Change, 47, 1-12. https://doi.org/10.1016/j.gloenvcha.2017.09.001
Sakata, Y., Ohara, T., & Sugiyama, M. (2008). The history of melon and cucumber grafting in Japan. In: Prange, R.K., Bishop, S.D. (ed.), Proceedings of XXVII IHC-S11 sustainability through integrated and organic horticulture. Acta Horticulturae, 767, 217-228. https://doi.org/10.17660/ActaHortic.2008.767.22
Sakata, Y., Ohara, T., & Sugiyama, M. (2008). The history of melon and cucumber grafting in Japan. Acta Horticulturae, 767, 217-228. https://doi.org/10.17660/ActaHortic.2008.767.22
Santos, H.S., & Goto, R. (2004). Sweet pepper grafting to control phytophthora blight under protected ultivation. Horticultura Brasileira, 22, 45-49.
Sarswat, S., & Kumar, P. (2019). Standardization of robotic grafting in bell pepper for horticultural and quality traits. Dissertation. CSK Himachal Pradesh Agricultural University, Palampur, India.
Schwarz, D., Beuch, U., Bandte, M., Fakhro, A., Büttner, C., & Obermeier, C. (2010). Spread and interaction of Pepino mosaic virus (PepMV) and Pythium aphanidermatum in a closed nutrient solution recirculation system: effects on tomato growth and yield. Plant Pathology, 59(3), 443-452. https://doi.org/10.1111/j.1365-3059.2009.02229.x
Schwarz, D., Rouphael, Y., Colla, G., & Venema, J.H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127, 162-171. https://doi.org/10.1016/j.scienta.2010.09.016
Schwarz, D., Rouphael, Y., Colla, G., Venema, J.H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162-171. https://doi.org/10.1016/j.scienta.2010.09.016
Shishido, M. (2014). Black root rot caused by Diaporthe sclerotioides threatens cucurbit cultivation in Japan. Advances in Horticultural Science, 208-213.
Siamak, S.B., & Paolo, S. (2019). Responses of grafted watermelon onto Cucurbita pepo Tiana F1 hybrid to boron nutritional disorders. Horticultural Plant Journal, 5(5), 213-220. https://doi.org/10.1016/j.hpj.2019.07.003
Sigüenza, C., Schochow, M., Turini, T., Ploeg, A. (2005). Use of Cucumis metuliferus as a rootstock for melon to manage Meloidogyne incognita. Journal of Nematology, 37(3), 276.
Spanò, R., Mascia, T., Kormelink, R., Gallitelli, D. (2015). Grafting on a non-transgenic tolerant tomato variety confers resistance to the infection of a sw5-breaking strain of tomato spotted wilt virus via RNA silencing. PLoS ONE, 10(10), p.e0141319. https://doi.org/10.1371/journal.pone.0141319
Thies, J.A., Ariss, J.J., Hassell, R.L., Olson, S., Kousik, C.S., & Levi, A. (2010). Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Disease, 94(10), 1195-1199.https://doi.org/10.1094/PDIS-09-09-0640
Traka-Mavrona, E., Koutsika-Sotiriou, M., Pritsa, T. (2000). Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Scientia Horticulturae, 83(3-4), 353-362. https://doi.org/10.1016/S0304-4238(99)00088-6.
Ventura JA, Lima IDM, Martins MVV, Culik MP, Costa H. (2019). Impact and management of diseases in the propagation of fruit plants. Revista Brasileira de Fruticultura, 41(4), 647. https://doi.org/10.1590/0100-29452019647
Vitale, A., Rocco, M., Arena, S., Giuffrida, F., Cassaniti, C., Scaloni, A., Lomaglio, T., Guarnaccia, V., Polizzi, G., Marra, M., & Leonardi, C. (2014). Tomato susceptibility to Fusarium crown and root rot: Effect of grafting combination and proteomic analysis of tolerance expression in the rootstock. Plant Physiology and Biochemistry, 83, 207-216. https://doi.org/10.1016/j.plaphy.2014.08.006
Wang, J., Zhang, D., & Fang, Q. (2002). Studies on antivirus disease mechanism of grafted seedless watermelon. Journal of Anhui Agricultural College, 29(4), 336-339.
Wehner, T.C., & Shetty, N.V. (1997). Downy mildew resistance of the cucumber germplasm collection in North Carolina field tests. HortScience, 32(3), 450B-450. https://doi.org/10.21273/HORTSCI.32.3.450B
Wilson, H.P., Kuhar, T.P., Rideout, S.L., & et al. (2012) Virginia Commercial Vegetable Production Recommendations. Verginia State University, p 191.
Yassin, H., & Hussen, S. (2015). Review on role of grafting on yield and quality of selected fruit vegetables. Global Journal of Science Research, 15, 1-15.
Yetisir, H., & Sari, N. (2003). Effect of different rootstock on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture, 43, 1269-1274. https://doi.org/10.1071/EA02095
Yin, Y., Zhou, B., & Li, Y. (2009). Effects of grafting on rhizosphere microorganisms of eggplants. Allelopathy Journal, 23(1), 149-156.
Zhang, S., Gu, X., & Wang, Y. (2006). Effect of bur cucumber (Sicyos angulatus L.) as rootstock on growth physiology and stress resistance of cucumber plants. Acta Horticulturae Sinica, 33(6), 1231-1236.
Zhou, X., Wu, Y., Chen, S., Chen, Y., Zhang, W., Sun, X., Zhao, Y. (2014). Using Cucurbita rootstocks to reduce fusarium wilt incidence and increase fruit yield and carotenoid content in oriental melons. HortScience, 49(11), 1365-1369. https://doi.org/10.21273/HORTSCI.49.11.1365