Document Type : Short Communication Article

Authors

1 Laboratory of Bioprocess and Bio-interfaces, Faculty of Sciences and Technics-University Sultan Moulay Sliman, Beni Mellal, Morocco

2 Laboratory of Biotechnology and Valorisation Natural Resources, Faculty of Sciences -University Ibn Zohr, Agadir, Morocco

Abstract

Purpose: The purpose of this study was to investigate the adhesion of Penicillium italicum and Penicillium digitatum spores on four materials commonly used in the citrus packaging chain (plastic, PVC, stainless steel, 316L and wood). Research methods: The physicochemical characterization of spores and material surfaces was carried out using the contact angle method. The number of adhered spores was estimated after being detached from supports in an ultrasonic bath. The results showed that all citrus materials processes were classified as hydrophobic except for the wood packaging. Surface spores of P. digitatum presented a relatively hydrophobic character, and surface spores of P. italicum presented a hydrophilic character. Both of the spores and all materials presented high electron donor/acceptor characters. Findings: The results showed that P. digitatum and P. italicum sporescould adhere to all the studied substrates. Furthermore, the highest adhesion was observed by  P. italicum and P. digitatum spores on wood packaging (58 Î 106 CFU/cm2) and (45 Î 106 CFU/cm2), respectively. The wood packaging was the least hygienic material concerning the adhesion ability of P. digitatum and P. italicum spores, followed by plastic packaging, PVC, and 316 L stainless steel. A correlation between substratum physicochemical properties and spore adhesion was also examined, while a good correlation was observed between spore adhesion and donor electron character. Research limitations: There were no limitations to this study. Originality/value: This research studied the adhesion of spores on materials commonly used in the citrus packaging chain.

Keywords

Main Subjects

Absolom, D.R., Lamberti, F.V., Policova, Z., Zingg, W., van Oss, C.J., & Neumann, A.W. (1983). Surface thermodynamics of bacterial adhesion. Applied  Envirnmental  Microbiology, 46(1), 90-97. https://doi.org/1128/AEM.46.1.90-97-1983
Amiri, A., Cholodowski, D. & Bompeix, G. (2005). Adhesion and germination of waterborne and airborne conidia of Penicillium expansum to apple and inert surfaces. Physiological and Molecular Plant Pathology, 67(1), 40-48. https://doi.org/10.1016/j.pmpp.2005.07.003
Assaidi, A., Ellouali, M., Latrache, H., Mabrouki, M., Hamadi, F., Timinouni, M.,... & Mliji, E.M. (2018a). Effect of temperature and plumbing materials on biofilm formation by Legionella pneumophila serogroup 1 and 2-15. Journal of Adhesion Science and Technology, 32(13), 1471-1484. https://doi.org/10.1080/01694243.2018.1423664
Assaidi, A., Ellouali, M., Latrache, H., Mabrouki, M., Timinouni, M., Zahir, H.,…& Mliji, E.M. (2018b). Adhesion of Legionella pneumophila on glass and plumbing materials commonly used in domestic water systems. International Journal of Environmental Health Research, 28(2), 125-133. https://doi.org/10.1080/09603123.2018.1429580
Azelmad, K., Hamadi, F., Mimouni, R., Amzil, K., Latrache, H., Mabrouki, M. & El Boulani, A. (2017). Adhesion of Staphylococcus aureus and Staphylococcus xylosus to materials commonly found in catering and domestic kitchens. Food Control, 73, 156-163. https://doi.org/10.1016/j.foodcont.2016.07.044
Barkai, H., Sadiki, M., El Abed, S., Moustakhim, M., Houssaini, M.I., & Koraichi, S.I. (2015). Comparison of the evolution of physico-chemical properties due to the single and combined adhesion of two species of the Penicillium genus on cedar wood. Journal of  Matererial and Environmental  Science, 6, 749-755. https://doi.org/10.1099/00221287-136-5-867
Bayer, M.E. & Sloyer Jr, J.L. (1990). The electrophoretic mobility of gram-negative and gram-positive bacteria: an electrokinetic analysis. Microbiology, 136(5), 867-874. https://doi.org/10.1099/00221287-136-5-867
Boutaleb, N., Latrache, H., & Sire, O. (2008). Bacteria-materials interactions in drinking water pipes. Role of the environment on the physico-chemical properties of the cell surface. Techniques Sciences Méthodes, (11), 73-90. https://doi.org/10.1051:tsm/200811073
Chamberlain, A. & Johal, S. (1988). Biofilm on meat processing surfaces. In  Biodeterioration 7,  Springer,  57-61.
De  Sá Silva, C.A., De Andrade, N.J., Soares, N.D.F.F., & Ferreira, S.O. (2003). Evaluation of ultraviolet radiation to control microorganisms adhering to low-density polyethylene films. Brazilian Journal of Microbiology, 34(2), 175-178. https://doi.org/10.1590/S1517-83822003000200017
Eckert, J. (1978). Post-harvest diseases of citrus fruits. Outlook on Agriculture, 9(5), 225-232. https://doi.org/10.11772F003072707800900506
El abed, S., Hamadi, F., Latrache, H., Iraqui, H.M.,& Ibnsouda, K.S. (2010). Adhesion of Aspergillus niger and Penicillium expansum spores on Fez cedar wood substrata. Annals of Microbiology, 60(3), 377-382. https://doi.org/10.1007/s13213-010-0045-0
El abed, S., Mostakim., M., Berguadi, F., Latrache, H.,Houari.H., Hamadi.F., & Ibnsouda.K.S. (2011). Study of microbial adhesion on some wood species: Theoretical prediction. Microbiology, 80(1), 43–49. https://doi.org/10.1134/S0026261711010152
Garret, T.R., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18(9), 1049-1056. https://doi.org/10.1016/j.pnsc.2008.04.001
Hamadi, F., Asserne, F., Elabed, S., Bensouda, S., Mabrouki, M., & Latrache, H. (2014). Adhesion of Staphylococcus aureus on stainless steel treated with three types of milk. Food Control, 38, 104-108. https://doi.org/10.1016/j.foodcont.2013.10.006
Hamadi, F., Latrache, H., Mliji, E., Mallouki, B., Mabrouki, M. & Ellouali, M. (2009). Adhésion de Staphylococcus aureus au verre et au téflon. Revues Microbiologie Industrielle, Sanitaire et Environnementale 12, 1-16.
Herald, P.J. & Zottola, E.A. (1988). Scanning electron microscopic examination of Yersinia enterocolitica attached to stainless steel at selected temperatures and pH values. Journal of Food Protection, 51(6), 445-448. https://doi.org/10.4315/0362-028X-51.6.445
Klein, J.D. & Lurie, S. (1991). Postharvest heat treatment and fruit quality. Postharvest News and Information, 2(1), 15-19. https://doi.org/10.1016/S0925-5214(98)00045-3
Newey, L.J., Caten, C.E. & Green, J.R. (2007). Rapid adhesion of Stagonospora nodorum spores to a hydrophobic surface requires pre-formed cell surface glycoproteins. Mycological Research, 111(11), 1255-1267. https://doi.org/10.1016/j.mycres.2007.09.007
Oliveira, K., Oliveira, T., Teixeira, P., Azeredo, J., Henriques, M. & Oliveira, R. (2006). Comparison of the adhesion ability of different Salmonella Enteritidis serotypes to materials used in kitchens. Journal of Food Protection, 69(10), 2352-2356. https://doi.org/10.4315/0362-028x-69.10.2352.
Pedersen, K. (1981). Electrostatic interaction chromatography, a method for assaying the relative surface charges of bacteria. Fems Microbiology Letters, 12(4), 365-367. https://doi.org/10.1111/j.1574-6968.1981.tb07675.x
Rosenberg, M. & Kjelleberg, S. (1986). Hydrophobic Interactions: Role in Bacterial Adhesion. In Advances in microbial ecology. Springer, 353-393.
Singh, V., Hedayetullah, Md., Zaman, P. & Meher, J. (2014).Postharvest technology of fruits and vegetables: An overview. Journal of Postharvest Technology, 2(2), 124-135. ID: 110538335
Teixeira, P. & Oliveira, R. (1999). Influence of surface characteristics on the adhesion of Alcaligenes denitrificans to polymeric substrates. Journal of Adhesion Science and Technology, 13(11), 1287-1294. https://doi.org/10.1163/156856199X00190
Van der Mei, H.C., van de Belt-Gritter, B., Reid, G., Bialkowska-Hobrzanska, H. & Busscher, H.J. (1997). Adhesion of coagulase-negative staphylococci grouped according to physico-chemical surface properties. Microbiology, 143(12), 3861-3870. https://10.1099/00221287-143-12-3861
Van Loosdrecht, M.C.M., Norde, W., Lyklema, J. & Zehnder, A.J.B. (1990). Hydrophobic and electrostatic parameters in bacterial adhesion. Aquatic Sciences, 52(1), 103-114. https://doi.org/10.1007/BF00878244
Van Oss, C.J. (1995). Hydrophobicity of biosurfaces-origin, quantitative determination, and interaction energies. Colloids and surfaces B: Biointerfaces, 5(3-4), 91-110. https://doi.org/10.1016/0927-7765(95)01217-7
Van Oss, C.J., Chaudhury, M.K. & Good, R.J. (1988). Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chemical Reviews, 88(6), 927-941. https://doi.org/10.1021/cr00088a006
Wösten, H.A.B, Schuren, F.H.J. & Wessels, J.G.H. (1994). Interfacial self‐assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. The EMBO Journal, 13(24), 5848-5854. https://doi.org/10.1002/j.1460-2075.1994.tb06929.x
Wösten, H.A. & Wessels, J.G. (1997). Hydrophobins, from molecular structure to multiple functions in fungal development. Mycoscience, 38(3), 363-374. https://doi.org/10.1007/BF02464099