Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran

2 Department of Biology, Faculty of Science, University of Birjand, Birjand 97179-414, Iran

3 Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran

Abstract

Purpose: To prevent chemical toxicity, biosynthesis of silver nanoparticles has been proposed as a cost-effective and environmentally friendly reducing agent option by corm extract of Crocus sativus var. Haussknechtii and as well as, evaluate their effects against Staphylococcus aureus and Escherichia coli. Research method: Silver nanoparticles were produced in the presence of secondary metabolites of this plant. The nanoparticles were then identified using the technique ultraviolet-visible spectroscopy (UV–Vis), fourier transform infrared (FTIR), field emission scanning electron microscope (FESEM).The antibacterial properties were used against two microorganisms, S. aureus (Gram-positive) and E. coli (Gram-negative), using the agar well propagation method. Findings: The observation of the peak at 450 nm in the UV-Vis spectra for corm synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. The optimum pH and AgNO3 concentrations were 9 and 4 mM, respectively. FESEM images detected the spherical Ag-NPs shape with diverse sizes ranged within 70.70–192.02 nm. Additionally, based on the antibacterial test that has been done for nanoparticles, the mean diameter of the inhibition zone after exposure to S. aureus and E. coli was 22.67±0.58 and 20.00±00 mm, respectively. Limitations: There was no significant limitation to report. Originality/Value: The corm extract of C. haussknechtii is a promising agent for the biosynthesis of almost spherical silver nanoparticles. The synthesized nanoparticles show good Inhibition activity in different concentrations. The AgNPs synthesized by corm extract in high concentrations are found to be high antibacterial activity against two bacterial organisms. This indicates that the increase in nanoparticle diameter is directly related to antimicrobial properties.
 

Keywords

Main Subjects

Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6(3), 399-408. https://doi.org/10.1007/s13204-015-0449-z
Bagherzade, G., Tavakoli, M. M., & Namaei, M. H. (2017). Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pacific Journal of Tropical Biomedicine, 7(3), 227-233. https://doi.org/10.1016/j.apjtb.2016.12.014
Bankier, C., Matharu, R., Cheong, Y. K., Ren, G., Cloutman-Green, E., & Ciric, L. (2019). Synergistic antibacterial effects of metallic nanoparticle combinations. Scientific Reports, 9(1), 1-8.     https://doi.org/10.1038/s41598-019-52473-2
Burdușel, A. C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., Ficai, A., & Andronescu, E. (2018). Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials, 8(9), 681. https://doi.org/10.3390/nano8090681
Chambers, H. F., & DeLeo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7(9), 629-641. https://doi.org/10.1038/nrmicro2200
Chouhan, N. (2018). Silver nanoparticles: synthesis, characterization and applications. Silver Nanoparticles-Fabrication, Characterization and Applications, 21-56. https://doi.org/10.5772/intechopen.75611
Dada, A. O., Adekola, F. A., Dada, F. E., Adelani-Akande, A. T., Bello, M. O., Okonkwo, C. R., &  Ajanaku, K. O. (2019). Silver nanoparticle synthesis by Acalypha wilkesiana extract: phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon, 5(10), e02517. https://doi.org/10.1016/j.heliyon.2019.e02517
Dada, A. O., Inyinbor, A. A., Idu, E. I., Bello, O. M., Oluyori, A. P., Adelani-Akande, T. A., & Dada, O. (2018). Effect of operational parameters, characterization and antibacterial studies of green synthesis of silver nanoparticles using Tithonia diversifolia. Peer Journal 6, e5865. https://doi.org/10.7717/peerj.5865
Escárcega-González, C. E., Garza-Cervantes, J. A., Vazquez-Rodríguez, A., Montelongo-Peralta, L. Z., Treviño-Gonzalez, M. T., Castro, E. D. B., & González, F. T. (2018). In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. International Journal of Nanomedicine, 13, 2349. https://doi.org/10.2147/IJN.S160605
Francis, S., Joseph, S., Koshy, E. P., & Mathew, B. (2018). Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artificial Cells, Nanomedicine, and Biotechnology, 46(4), 795-804. https://doi.org/10.1080/21691401.2017.1345921
Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 844-851. https://doi.org/10.1080/21691401.2019.1577878
Hamouda, R. A., Hussein, M. H., Abo-elmagd, R. A., & Bawazir, S. S. (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports, 9(1), 1-17. https://doi.org/10.1038/s41598-019-49444-y
Hamzeloo-Moghadam, M., Shahrestani, R., Keramatian, B., & Mohebby, S. (2019). cytotoxic activity of Crocus pallasii subsp. haussknechth in human cancer cell lines. International Journal of Pharmaceutical Sciences and Research, 10(1), 117-120. https://doi.org/10.13040/IJPSR.0975-8232.10(1).117-20
Husen, A. (2017). Gold nanoparticles from plant system: synthesis, characterization and their application. Nanoscience and plant–soil systems (pp. 455-479): Springer. https://doi.org/10.1007/978-3-319-46835-8_17
Jha, A. K., & Prasad, K. (2010). Green synthesis of silver nanoparticles using Cycas leaf. International Journal of Green Nanotechnology: Physics and Chemistry, 1(2), P110-P117.    https://doi.org/10.1080/19430871003684572
Jiang, H., Manolache, S., Wong, A. C. L., & Denes, F. S. (2004). Plasma‐enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 93(3), 1411-1422. https://doi.org/10.1002/app.20561
Khani, R., Roostaei, B., Bagherzade, G., & Moudi, M. (2018). Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay. Journal of Molecular Liquids, 255, 541-549. https://doi.org/10.1016/j.molliq.2018.02.010
Kumar, D., Kumar, G., & Agrawal, V. (2018). Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall. bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitology Research, 117(2), 377-389. https://doi.org/ 10.1007/s00436-017-5711-8
Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today, 10(3), 339-354. https://doi.org/10.1016/j.nantod.2015.04.002
Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22(4), 582-610. https://doi.org/10.1128/CMR.00040-09
Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., & Chen, W. (2020). Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis, 141, 103980. https://doi.org/10.1016/j.micpath.2020.103980
Noah, N. (2019). Green synthesis: Characterization and application of silver and gold nanoparticles Green Synthesis, Characterization and Applications of Nanoparticles (pp. 111-135): Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00006-X
Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712-1720. https://doi.org/10.1128/AEM.02218-06
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
Rajeshkumar, S., & Bharath, L. (2017). Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity. Chemico-Biological Interactions, 273, 219-227. https://doi.org/10.1016/j.cbi.2017.06.019
Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9(5), 2673-2702. https://doi.org/10.1039/c8ra08982e
Saxena, R. (2010). Botany, taxonomy and cytology of Crocus sativus series. Ayu, 31(3), 374-381. https://doi.org/10.4103/0974-8520.77153
Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496-502. https://doi.org/10.1016/j.jcis.2004.03.003
Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16(1), 14. https://doi.org/10.1186/s12951-018-0334-5
Solgi, M. (2014). Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiology and Molecular Biology of Plants, 20(3), 279-285. https://doi.org/10.1007/s12298-014-0237-3
Tippayawat, P., Phromviyo, N., Boueroy, P., & Chompoosor, A. (2016). Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. Peer Journal, 4, e2589. https://doi.org/10.7717/peerj.2589
Yun’an Qing, L. C., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., & Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 13, 3311-3327.     https://doi.org/10.2147/IJN.S165125