Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6(3), 399-408. https://doi.org/10.1007/s13204-015-0449-z
Bagherzade, G., Tavakoli, M. M., & Namaei, M. H. (2017). Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pacific Journal of Tropical Biomedicine, 7(3), 227-233. https://doi.org/10.1016/j.apjtb.2016.12.014
Bankier, C., Matharu, R., Cheong, Y. K., Ren, G., Cloutman-Green, E., & Ciric, L. (2019). Synergistic antibacterial effects of metallic nanoparticle combinations. Scientific Reports, 9(1), 1-8. https://doi.org/10.1038/s41598-019-52473-2
Burdușel, A. C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., Ficai, A., & Andronescu, E. (2018). Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials, 8(9), 681. https://doi.org/10.3390/nano8090681
Chambers, H. F., & DeLeo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7(9), 629-641. https://doi.org/10.1038/nrmicro2200
Chouhan, N. (2018). Silver nanoparticles: synthesis, characterization and applications. Silver Nanoparticles-Fabrication, Characterization and Applications, 21-56. https://doi.org/10.5772/intechopen.75611
Dada, A. O., Adekola, F. A., Dada, F. E., Adelani-Akande, A. T., Bello, M. O., Okonkwo, C. R., & Ajanaku, K. O. (2019). Silver nanoparticle synthesis by Acalypha wilkesiana extract: phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon, 5(10), e02517. https://doi.org/10.1016/j.heliyon.2019.e02517
Dada, A. O., Inyinbor, A. A., Idu, E. I., Bello, O. M., Oluyori, A. P., Adelani-Akande, T. A., & Dada, O. (2018). Effect of operational parameters, characterization and antibacterial studies of green synthesis of silver nanoparticles using Tithonia diversifolia. Peer Journal 6, e5865. https://doi.org/10.7717/peerj.5865
Escárcega-González, C. E., Garza-Cervantes, J. A., Vazquez-Rodríguez, A., Montelongo-Peralta, L. Z., Treviño-Gonzalez, M. T., Castro, E. D. B., & González, F. T. (2018). In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. International Journal of Nanomedicine, 13, 2349. https://doi.org/10.2147/IJN.S160605
Francis, S., Joseph, S., Koshy, E. P., & Mathew, B. (2018). Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artificial Cells, Nanomedicine, and Biotechnology, 46(4), 795-804. https://doi.org/10.1080/21691401.2017.1345921
Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 844-851. https://doi.org/10.1080/21691401.2019.1577878
Hamouda, R. A., Hussein, M. H., Abo-elmagd, R. A., & Bawazir, S. S. (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports, 9(1), 1-17. https://doi.org/10.1038/s41598-019-49444-y
Hamzeloo-Moghadam, M., Shahrestani, R., Keramatian, B., & Mohebby, S. (2019). cytotoxic activity of Crocus pallasii subsp. haussknechth in human cancer cell lines. International Journal of Pharmaceutical Sciences and Research, 10(1), 117-120. https://doi.org/10.13040/IJPSR.0975-8232.10(1).117-20
Husen, A. (2017). Gold nanoparticles from plant system: synthesis, characterization and their application. Nanoscience and plant–soil systems (pp. 455-479): Springer. https://doi.org/10.1007/978-3-319-46835-8_17
Jha, A. K., & Prasad, K. (2010). Green synthesis of silver nanoparticles using Cycas leaf. International Journal of Green Nanotechnology: Physics and Chemistry, 1(2), P110-P117. https://doi.org/10.1080/19430871003684572
Jiang, H., Manolache, S., Wong, A. C. L., & Denes, F. S. (2004). Plasma‐enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 93(3), 1411-1422. https://doi.org/10.1002/app.20561
Khani, R., Roostaei, B., Bagherzade, G., & Moudi, M. (2018). Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay. Journal of Molecular Liquids, 255, 541-549. https://doi.org/10.1016/j.molliq.2018.02.010
Kumar, D., Kumar, G., & Agrawal, V. (2018). Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall. bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitology Research, 117(2), 377-389. https://doi.org/ 10.1007/s00436-017-5711-8
Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today, 10(3), 339-354. https://doi.org/10.1016/j.nantod.2015.04.002
Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22(4), 582-610. https://doi.org/10.1128/CMR.00040-09
Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., & Chen, W. (2020). Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis, 141, 103980. https://doi.org/10.1016/j.micpath.2020.103980
Noah, N. (2019). Green synthesis: Characterization and application of silver and gold nanoparticles Green Synthesis, Characterization and Applications of Nanoparticles (pp. 111-135): Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00006-X
Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712-1720. https://doi.org/10.1128/AEM.02218-06
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
Rajeshkumar, S., & Bharath, L. (2017). Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity. Chemico-Biological Interactions, 273, 219-227. https://doi.org/10.1016/j.cbi.2017.06.019
Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9(5), 2673-2702. https://doi.org/10.1039/c8ra08982e
Saxena, R. (2010). Botany, taxonomy and cytology of Crocus sativus series. Ayu, 31(3), 374-381. https://doi.org/10.4103/0974-8520.77153
Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496-502. https://doi.org/10.1016/j.jcis.2004.03.003
Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16(1), 14. https://doi.org/10.1186/s12951-018-0334-5
Solgi, M. (2014). Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiology and Molecular Biology of Plants, 20(3), 279-285. https://doi.org/10.1007/s12298-014-0237-3
Tippayawat, P., Phromviyo, N., Boueroy, P., & Chompoosor, A. (2016). Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. Peer Journal, 4, e2589. https://doi.org/10.7717/peerj.2589
Yun’an Qing, L. C., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., & Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 13, 3311-3327. https://doi.org/10.2147/IJN.S165125