Document Type : Original Article

Authors

1 Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran

2 Department of Horticultural Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Purpose: The efficiency of callus induction as source of bioactive compound is a critical step in the cell suspension culture for commercial production of important secondary metabolites. One of the main factors affecting callus efficiency is the developmental stage of explants. On the other hands, it has been declared that the optimization of medium composition has a significant influence on callogenesis and increment of biomass.  Research method: The aim of this study was the evaluation of different developmental stages of saffron corms as a source of explant preparation (immature and mature corms), plant growth regulators (PGRs) combinations (1-Naphthaleneacetic acid (NAA); 2, 4-dichlorophenoxyacetic acid (2,4-D); 6-Benzyladenine (BA) and kinetin (Kin)) and type of medium (Gamborg (B5) medium and Murashige and Skoog (MS) medium) in callus induction in saffron corms to increase cell biomass. The media were supplemented with different combinations of 1-Naphthaleneacetic acid or 2, 4-dichlorophenoxyacetic acid (2, 4, 8 mgL-1) as auxins and 6-Benzyladenine or kinetin (1, 4, 8 mgL-1) as cytokinin. Findings: The results showed that mature corms harvested in May had the best developmental stage for callogenesis. The maximum callus formation was recorded in B5 medium supplemented with 2,4-dichlorophenoxyacetic acid (4 mgL-1) and kinetin (1 mgL-1) with 2.61 g fresh weight. Limitations: No limitations to report. Originality/Value: This protocol for sampling explant and callus formation was found to make suitable sources of plant material for further study in production of bioactive compounds via cell suspension cultures.

Keywords

Main Subjects

Abbas, M. S., El-shabrawi, H. M., Soliman, A. S. & Selim, M. A. (2018) Optimization of germination, callus induction, and cell suspension culture of African locust beans Parkia biglobosa (Jacq.) Benth. Journal of Genetic Engineering and Biotechnology, 16(1), 191-201. https://doi.org/10.1016/j.jgeb.2017.10.012
Aisagbonhi, E. P., 1Isalar, C. E., 1Odenore, V. D., 1Ogbebor, J. U., 1Eke, C. R., Asemota, O. and Shittu, H. O. (2015). The interplay between explant developmental stages and phytohormone type in callogenesis of shea tree (Vitellaria paradoxa C. F. Gaertn). European International Journal of Science and Technology, 4(7), 50-57. https://www.researchgate.net/publication/303082490
Amini, F., Ghanbarzadeh, Z. & Askary Mehrabadi, M. (2013). Optimization of callus production and plant regeneration in Salsola arbuscular pall. Journal of Cell and Tissue, 4(2), 129-137.
Antonelli, M. & Druart, P. (1990). The use of a brief 2, 4-D treatment to induce leaf regeneration on Prunus canescens. Acta Horticulturae, 280, 45–50. https://doi.10.17660/ActaHortic.1990.280.6
Blazquez, S., Olmos, E., Hernandez, J. A., Fernandez-Garcia, N., Fernandez, J. A. & Piqueras, A. (2009). Somatic embryogenesis in saffron (Crocus sativus L.) Histological differentiation ad implication of some components of the antioxidand enzymatic system. Plant Cell Tissue Organ Culture, 97(1), 49-57. https://doi.10.1007/s11240-009-9497-y.
Chen, S., Wang, X., Zhao, B., Yuan, X. & Wang, Y. (2003). Production of crocin using Crocus sativus callus by two-stage culture system. Biotechnology Letters 25(15):1235-1238
Choob, V., Vlassova, T., Butenko, R. (1994). Callusogenesis and morphogenesis in generative organ culture of the single flowering species of crocus. Russian Journal of Plant Physiology, 41(6), 712-716.
Dayal, S., Lavanya, M., Devi, P. & Sharma, K. K. (2003). An efficient protocol for shoot regeneration and genetic transformation of Pigeon pea [Cajanus cajan (L.) Millsp.] using leaf explants. Plant Cell Reports, 21, 1072–1079. https://doi.org/10.1007/s00299-003-0620-y
Devi, K., Sharma, M. & Ahuja, P. (2014).Direct somatic embryogenesis with high frequency plantlet regeneration and successive cormlet production in saffron (Crocus sativus L.). South African Journal of Botany, 93, 207-216. https://doi.org/10.1016/j.sajb.2014.04.006
Dhar, A. & Sapru, R. (1993). Studies on saffron in Kashmir. In vitro production of corm and shoot like structures. Indian Journal of Genetics and Plant Breeding, 53(2), 193-196.
Fallahi, H.R., Mahmoodi, S. (2018). Impact of water availability and fertilization management on saffron (Crocus sativus L.) biomass allocation. Journal of Horticulture and Postharvest Research, 1(2), 131-146.
Gamborg, O. L., Miller, R. A., Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
Georgiev, M. I., Weber, J. & Maciuk, A. (2009). Bioprocessing of plant cell cultures for mass production of targeted compounds. Applied Microbiology and Biotechnology, 83(5), 809-823. https://doi.org/10.1007/s00253-009-2049-x
Halim, R., Akyol, B., Gurel, A. & Bayraktar, M. (2018). In vitro callus induction of saffron (Crocus sativus L.). International Journal of Innovative Research in Science, Engineering and Technology, 3(11), 1-5.
Holme, I. B., Petersen, K. K. (1996). Callus induction and plant regeneration from different explant types of Miscanthus x ogiformis Honda ‘Giganteus’. Plant Cell Tissue and Organ Culture, 45(1), 43-52. https://doi.org/10.1007/bf00043427
Hoque, E., Mansfield, J. W. (2004). Effect of genotype and explant age on callus induction and subsequent plant regeneration from root-derived callus of Indica rice genotypes. Plant Cell, Tissue and Organ Culture, 78, 217-223.
Husaini, A. M., Kamili, A. N., Wani, M., Teixeira da Silva, J. & Bhat, G. (2010). Sustainable saffron (Crocus sativus Kashmirianus) production. Technology and policy interventions for Kashmir. Functional Plant Science and Biotechnology, 4(2), 116-127.
Ibrahim, R. & Debergh, P.C. (2001). Factors controlling high efficiency adventitious bud formation and plant regeneration from in vitro leaf explants of roses (Rosa hybrida L.). Scientia Horticulturae, 88, 41–57. https://doi.org/10.1016/s0304-4238(00)00189-8
Ilahi, I., Jabeen, M. & Firdous, N. (1987). Morphogenesis with saffron tissue culture. Journal of Plant Physiology, 128(3), 227-232. https://doi.org/10.1016/s0176-1617(87)80236-5
González, G. A., Pacheco,  M. G.Cecilia, Oneto, D., Etchart, V. J.,  Kandus,  M. V., Salerno,  J. C., Eyherabide, G., Presello, D., Lewi, D. M. (2012). Somatic embryogenesis and plant regeneration capacity in Argentinean maize (Zea mays L.) inbred lines. Electronic Journal of Biotechnology, 15, 1-15.
González, J, V. T., López-Ruiz, B. A., Baldrich, P., Luján-Soto, E., Meyers, B. C., Dinkova, T. D.  (2019). The explant developmental stage profoundly impacts small RNA-mediated regulation at the dedifferentiation step of maize somatic embryogenesis.Scientific Reports, 9 (14511), 1-14. https://doi.org/10.1038/s41598-019-50962-y
Karaoğlu, C., Çocu, S., Ipek, A., Parmaksız, I., Uranbey, S., Sarıhan, E., Arslan, N., Kaya, M. D., Sancak, C., Ozcan, S., Gurbuz, B., Mirici, S., Er, C. & Khawar, K. M. (2006). In vitro micropropagation of saffron. In II International Symposium on Saffron Biology and Technology, 739, 223-227. https://doi.org/10.17660/actahortic.2007.739.28
Lopez-Corcoles, H., Brasa-Ramos, A., Montero-García, F., Romero-Valverde, M. & Montero-Riquelme, F. (2015). Phenological growth stages of saffron plant (Crocus sativus L.) according to the BBCH Scale. Spanish Journal of Agricultural Research, 13(3), 1-7. https://doi.org/10.5424/sjar/2015133-7340
Lozano, P., Delgado, D., Gomez, D., Rubio, M., Iborra, J. (2000). A non-destructive method to determine the safranal content of saffron (Crocus sativus L.) by supercritical carbon dioxide extraction combined with high performance liquid chromatography and gas chromatography. Journal of Biochemical and Biophysical Methods, 43(1-3), 367-378. https://doi.org/10.1016/s0165-022x(00)00090-7
Mathew, B. (1977). Crocus sativus and its allies (Iridaceae). Plant Systematic and Evolution, 128(1-2), 89-103. https://doi.org/10.1007/bf00985174
Mazumdar, P., Basu, A., Paul, A., Mahanta, C. & Sahoo, L. (2010). Age and orientation of the cotyledonary leaf explants determine the efficiency of de novo plant regeneration and Agrobacterium tumefaciens mediated transformation in Jatropha curcas L. South African Journal of Botany, 76, 337–344. https://doi.org/10.1016/j.sajb.2010.01.001
Milyaeva, E., Azizbekova, N. S., Komarova, E. & Akhundova, D. (1995). In-vitro formation of regenerant corms of saffron (Crocus sativus L.). Russian Joural of Plant Physiology, 42(1), 112-119.
Mir, J. I., Abuzar, A., Wani, S. H., Ahmad Sheikh, M., Rashid, R. & Mir, H. (2010). In vitro development of microcorms and stigma like structures in saffron (Crocus sativus L.) Physiology and Molecular Biology of Plants, 16(4), 369-73. https://doi.org/10.1007/s12298-010-0044-4
Moradi, A., Zarinkamar, F., Caretto, S. & Azadi, P. (2018). Influence of thidiazuron on callus induction and crocin production in corm and style explant of Crocus sativus L. Acta Physiology Plant, 40(11), 185. https://doi.org/10.1007/s11738-018-2760-2
Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco cultures. Plant Physiology, 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Murthy, H. N. & Pyati, A. N. (2001). Micropropagation of Aerides maculosum lindl. (Orchidaceae). In Vitro Cellular and Developmental Biology-Plant, 37, 223-226. https://doi.org/10.1007/s11627-001-0039-5
Mzabri, I. Addi, M. & Berrichi, A. (2019). Traditional and Modern Uses of Saffron (Crocus sativus). Cosmetics, 6(63), 1-11. https:doi: //10.3390/cosmetics6040063
Plessner, O., Negbi, M., Ziv, M. & Basker, D. (1989). Effect of temperature on the flowering of the saffron crocus (Crocus sativus L.): induction of hysteranthy. Israel Journal of Plant Sciences, 38(1), 1-7. https://doi.org/10.1007/978-3-642-73271-3_91
Raja, W., Zaffer, G. & Wani, S. (2006). In vitro micro corm formation in saffron (Crocus sativus L.) In: II International Symposium on Saffron Biology and Technology, 739, 291-296. https://doi.org/10.17660/actahortic.2007.739.37
Safarnejad, A., Alamdari, S. B. L., Darroudi, H. & Dalir, M. (2016). The effect of different hormones on callus induction, regeneration and multiplication of saffron (Crocus sativus L.) corms. Saffron Agronomy & Technology, 4(2), 143-154.
Sajjadi, M. & Pazhouhandeh, M. (2015). Study on effect of type of explant and hormone on callus induction and regeneration in saffron (Crocus sativus L.). Saffron Agronomy and Technology, 3(3), 195-202.
Sharifi, G., Ebrahimzadeh, H., Ghareyazie, B. & Karimi, M. (2010). Globular embryo-like structures and highly efficient thidiazuron-induced multiple shoot formation in saffron (Crocus sativus L.). In Vitro Cellular and Developmental Biology – Plant, 46(3), 274-280. https://doi.org/10.1007/s11627-009-9264-0
Sharma, K., Rathour, R., Sharma, R., Goel, S., Sharma, T. & Singh, B. (2008). In vitro cormlet development in Crocus sativus. Plant Biology, 52(4), 709-712. https://doi.org/10.1007/s10535-008-0136-y
Suarez-Ambriz, I., Gonzalez-Ronquillo, M., Dominguez-Lopez, A., Trejo-Gonzalez, A. & Riveron-Negrete, L. (2009). A method to improve the induction of callus from saffron (Crocus sativus Linneo) corm. In: II International Symposium on Saffron: Forthcoming challenges in cultivation research and economics, 850, 99-102. https://doi.org/10.17660/actahortic.2010.850.14
Sun, Y., Zhao, Y., Wang, X., Qiao, G., Chen, G., Yang, Y., Zhou, J., Jin, L. & Zhuo, R. (2009). Adventitious bud regeneration from leaf explants of Platanus occidentalis L. and genetic stability assessment. Acta Physiologia Plantarum, 31, 33–41. https://doi.org/10.1007/s11738-008-0196-9
Thomas, T. D. (2003). Thidiazuron induced multiple shoot induction and plant regeneration from cotyledonary explants of mulberry. Biologia Plantarum, 46, 529–533. https://doi.org/10.1023/a:1024807426591
Ting, P., Pai, S., Wu, I. & Wang, P. (1979). Preliminary report on tissue culture of corm of Crocus sativus. Acta Botanica Sinica, 21, 387‐387.
Vahedi, M., Kalantari, S. & Salami, S.A. (2014). Factors affecting callus induction and organogenesis in saffron (Crocus sativus L.). Plant Tissue Culture and Biotechnology, 24(10), 1-9. https://doi.org/10.3329/ptcb.v24i1.19184
Veraplakorn, V. (2016). Micropropagation and callus induction of Lanata camara L.: a medicinal plant. Agriculture and Natural Resources, 50(5), 338-344. https://doi.org/10.1016/j.anres.2016.12.002
Verma, S. K., Das, A. K., Cingoz, G. S., Uslu, E., Gurel, E. (2016). Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species. Biotechnology Report, 10, 66-74. https://doi.org/10.1016/j.btre.2016.03.006
Xu, L., Najeeb, U., Raziuddin, R., Shen, W. Q., Shou, J. Y., Tang, G. X. & Zhou, W. J. (2009). Development of an efficient tissue culture protocol for callus formation and plat regeneration of wetland species Juncus effuses L. In Vitro Cellular and Developmetal Biology Plant, 45(5), 610-618. https://doi.org/10.1007/s11627-009-9228-4
Yildrim, E. (2007). Development of in vitro micropropagation techniques for saffron (Crocus sativus L.). MSc. Thesis, Middle East Technical University, Ankara, Turkey.