Abboud, S., Vives-Peris, V., Dbara, S., Gomez-Cadenas, A., P´erez-Clemente, R.M., Abidi, W., & Braham, M. (2021). Water status, biochemical and hormonal changes involved in the response of Olea europaea L. to water deficit induced by partial root-zone drying irrigation (PRD). Scientia Horticulturae 276, 109737. https://doi.org/10.1016/j.scienta.2020.109737
Aganchich, B., Wahbi, S., Loreto, F., & Centritto, M. (2009). Partial root zone drying regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings. Tree Physiology, 29, 685–696. https://doi.org/10.1093/treephys/tpp012
Angelopoulos, K., Dichio, B., & Xiloyannis, C. (1996). Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. Journal of Experimental Botany, 47, 1093–1100. https://doi.org/10.1093/jxb/47.8.1093
Aranda, I., Castro, L., Pardos, M., Gil, L., & Pardos, J.A. (2005). Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (Quercus suber L.) seedlings. Forest Ecology Management, 210, 117–129. https://doi.org/10.1016/j.foreco.2005.02.012
Arnon, D.I. (1949). Copper enzymes in isolated chloroplast, polyphenol oxidases in Beta vulgaris. Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1
Arzani, K. (2003). A Perspective on the Importance of Preservation, Maintenance, Improvement and Management of Iranian Traditional Orchards. In Proceedings of the 1st National Iranian Traditional Orchards Conference, 3rd of June, Qazvin, Iran (pp. 1-5).
Bacelar, E.A., Santos, DL., Moutinho-Pereira, J.M., Goncalves, B.C., Ferreira, H.F., & Correia, C.M. (2006). Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage. Plant Science, 70, 596–605. https://doi.org/10.1016/j.plantsci.2005.10.014
Bacelar, E.A., Santos, D.L., Moutinho-Pereira, J.M., Lopes, J.I., Goncalves, B.C., Ferreira, T.C., & Correia, C.M. (2007). Physiological behaviour, oxidative damage and antioxidative protection of olive trees grown under different irrigation regimes. Plant and Soil, 292, 1–12. https://doi.org/10.1007/s11104-006-9088-1
Bell, R.L., & Hough, L.F. (1986). Interspecific and intergeneric hybridization of pyrus. Horticulture, 21, 62-64. https://doi.org/10.1007/978-3-642-16057-8_8,
Ben Ahmed, Ch., Ben Rouina, B., Sensoy, S., Boukhris, M., & Ben Abdallah, F. (2009). Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany, 67, 345–352. https://doi.org/10.1016/j.envexpbot.2009.07.006Get rights and content
Ben Rouina, B., Trigui, A., d’Andria, R., Boukhris, M., & Chaieb, M. (2007). Effects of water stress and soil type on photosynthesis, leaf water potential and yield of olive trees (Olea europaea L. cv. Chemlali Sfax). Australian Journal of Experimental Agriculture, 47, 1484-1490. https://doi.org/10.1071/EA05206
Bolat, I., Dikilitas, M., Ercisli, S., Ikinci, A., & Tonkaz, T. (2014). The Effect of Water Stress on Some Morphological, Physiological, and Biochemical Characteristics and Bud Success on Apple and Quince Rootstocks. Science World Journal, 1-8. https://doi.org/10.1155/2014/769732
Boussadia, O., Ben Mariem, F., Mechri, B., Boussetta, W., Braham, M., & Ben El Hadj, S. (2008). Response to drought of two olive tree cultivars (cv Koroneki and Meski). Scientia Horticulturae, 116, 388-393. https://doi.org/10.1016/j.scienta.2008.02.016
Bueckert, R.A. (2013). General Principles of Plant Water Relations. Prairie Soils and Crops Journal, 6, 107-118. https://prairiesoilsandcrops.ca/articles/volume-6-11-screen.pdf
Caulet, R.P., Gradinariua, G., Iurea, D., & Morariu, A. (2014). Influence of furostanol glycosides treatments on strawberry (Fragaria × ananassa Duch.) growth and photosynthetic characteristics under drought condition. Scientia Horticulturae, 169, 179-188. https://doi.org/10.1016/j.scienta.2014.02.031
Centritto, M., Loreto, F., & Chartzoulakis, K. (2003). The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt stressed olive saplings. Plant Cell Environment, 26, 585-594. https://doi.org/10.1046/j.1365-3040.2003.00993.x
Chartzoulakis, K., Patakas, A., & Bosabalidis, A. (1999). Changes in water relations photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environmental and Experimental Botany, 42, 113-120. https://doi.org/10.1016/S0098-8472(99)00024-6
Cornic, G. (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends in Plant Science, 5(5), 187-188. https://doi.org/10.1016/S1360-1385(00)01625-3
Cornic, G., & Massacci, A. (1996). Leaf photosynthesis under drought stress. In Photosynthesis and the Environment. Baker, N. (Ed.), Kluwer Academic Publishers, Dordrecht, 347-366.
Dai, A. (2011). Drought under global warming: a review. WIRES Climate Change, 2, 45-65. https://doi.org/10.1002/wcc.81
Dbara, S., Haworth, M., Emiliani, G., Ben Mimoun, M., Gómez-Cadenas, A., & Centritto, M. (2016 a). Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui') Induces Reduced Yield under Field Conditions. PLOS One, 11(6),1-20. https://doi.org/10.1371/journal.pone.0157089
Dbara, S., Ouni, R., Fezai, N., & Mars M. (2016 b). Réponses physiologiques de deux variétés de poirier (Pyrus communis L.) au déficit hydrique. Journal of New Science, 31(2), 1736-1741.
Diaz-Pérez, J.C., Shackel, K.A., & Sutter, E.G. (1994). Relative water content and water potential of tissue. Journal of Experimental Botany, 46 (1), 111-118. https://doi.org/10.1093/jxb/46.1.111
Dong, X.G., Cao, Y.F., Tian , L.M., Wang, K., Zhang, Y., & Qi, D. (2015). Leaf morphology and photosynthetic characteristics of wild Ussurian pear in China. Ying Yong Sheng Tai Xue Bao, 26 (5), 1327-1334.
Dong, X., & Zhang, X. (2000). Special stomatal distribution in Sabina vulgaris in relation to its survival in a desert environment. Trees, 14, 369-375. https://doi.org/10.1007/s004680000054
Evans, J.R., Kaldendorf, R., Genty, B., & Terashima, I. (2009). Resistances along the CO2 diffusion pathway inside leaves. Journal of Experimental Botany, 60, 2235-2248. https://doi.org/10.1093/jxb/erp117
Egert, M., & Tevini, M. (2002). Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Journal of Experimental Botany,48, 43-49. https://doi.org/10.1016/S0098-8472(02)00008-4
Esmaeilpour, A., Van Labeke, M.C., Samson, R. Boeckx, P., & Van Damme, P. (2016). Variation in biochemical characteristics, water status, stomata features, leaf carbon isotope composition and its relationship to water use efficiency in pistachio (Pistacia vera L.) cultivars under drought stress condition. Scientia Horticulturae, 211, 158-166. https://doi.org/10.1016/j.scienta.2016.08.026
Flexas, J., & Medrano, H. (2002). Energy dissipation in C3 plants under drought. Functional Plant Biology, 29, 1209-1215. https://doi.org/10.1071/FP02015
Fong, B.N., Reba, M.L., Teague, T.G., Runkle, B.R.K., & Suvočarev, K. (2020). Eddy covariance measurements of carbon dioxide and water fluxes in US mid-south cotton production.
Agriculture, Ecosystems & Environment, 292, 106813.
https://doi.org/10.1016/j.agee.2019.106813
Gholami, M., Rahemi, M., Kholdebarin, B., & Rastegar, S. (2012). Biochemical responses in leaves of four fig cultivars subjected to water stress and recovery. Scientia Horticulturae 148, 109-117. https://doi.org/10.1016/j.scienta.2012.09.005
IPCC. (2007). Climate Change: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press.
Jackson, J. (2003). The biology of apple and pear. Cambridge, UK, Cambridge University Press.
Jin, R., Shi, H., Han, C., Zhong, B., Wang, Q., & Chan, Z. (2015). Physiological changes of purslane (Portulaca oleracea L.) after progressive drought stress and rehydration. Scientia Horticulturae,194, 215-221. https://doi.org/10.1016/j.scienta.2015.08.023
Jones, H.G. (1973). Limiting factors in photosynthesis. New Phytologist, 72, 1095-1106. https://doi.org/10.1111/j.1469-8137.1973.tb02086.x
Jones, H.G. (1992). Plants and microclimate. A quantitative approach to plant physiology. Cambridge, UK, Cambridge University Press.
Jones, M.M., & Turner, T.C. (1978). Osmotic adjustment in leaves of sorghum on response to water deficits. Plant Physiology, 25, 591–597. https://doi.org/10.1104/pp.61.1.122
Lane, W.D. (1979). Regeneration of pear plants from meristem-tips. Plant Science Lettesr, 16, 337-342. https://doi.org/10.1016/0304-4211(79)90046-4
Lawlor, D.W. (2002). Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Annals of Botany, 89, 871–885. https://doi.org/10.1093/aob/mcf110
Mantovani, A. (1998). A method to improve leaf succulence quantification. Brazilian Archives of Biology and Technology, 42(1), 1-6. https://doi.org/10.1590/S1516-89131999000100002
Marsal, J., Rapoport, H.F., Manrique, T., & Girona, J. (2000). Pear fruit growth under regulated deficit irrigation in container-grown trees. Scientia Horticulturae, 85, 243-259. https://doi.org/10.1016/S0304-4238(99)00151-X
Marsal, J., Mata, M., Arbones, A., Del Campo, J., Girona, J., & Lopez, G. (2008). Factors involved in alleviating water stress by partial crop removal in pear trees. Tree Physiology, 28, 1375-1382. https://doi.org/10.1093/treephys/28.9.1375
Munir, M., Khan, M.A., Ahmed, M., Bano, A., Ahmed, S.N.,Tariq, K., Tabassum S.,Mukhtar T., Ambreen M., & Bashir S. (2011). Foliar epidermal anatomy of some ethno botanically important species of wild edible fruits of northern Pakistan. Journal of Medicinal Plants Research, 5, 5873-5880.
Petridis, A., Thioris, I., Samouris, G., & Giannakoula, A. (2012). Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiology and Biochemistry, 60, 1-11. https://doi.org/10.1016/j.plaphy.2012.07.014
Robyt, J.F., & White, B.J. (1987). Biochemical Techniques: Theory and Practice. Monterey, California, Brooks Cole Publishing Company.
Roussos, A.P., Denaxa, N.K., Damvakaris, T., & Argyrokastritis, V.S.I. (2010). Effect of alleviating products with different mode of action on physiology and yield of olive under drought. Scientia Horticulturae,125, 700-711. https://doi.org/10.1016/j.scienta.2010.06.003
Sharma, S., & Sharma, M. (2008). Effect of rootstocks on leaf water potential, water relations, antioxidant activities and drought tolerance in flemish beauty pear under water stress conditions. Indian Journal of Plant Physiology, 13(3), 266-271.
Singer, S.M., Helmy, Y.I., Karas, A.N., & Abou-Hadid, A.F. (2003). Influences of different water stress treatments on growth, development and production of snap bean (
Phaseolus vulgaris L.).
Acta Horticulturae,
14, 605-611.
https://doi.org/10.17660/ActaHortic.2003.614.90
Smit, T.G., Taylor, N.G., & Midgley, S.J.E. (2020). The seasonal regulation of gas exchange and water relations of field grown macadamia. Scientia Horticulturae,267, 109346. https://doi.org/10.1016/j.scienta.2020.109346
Sofo, A., Dichio, B., Xiloyannis, C., & Masia, A. (2004). Lipoxygenase activity and proline accumulation in leaves and roots of olive tree in response to drought stress. Physiologia Plantarum, 121, 58–65. https://doi.org/10.1111/j.0031-9317.2004.00294.x
Sun, J., Gu, J., Zeng, J., Han, S., Song, A., Chen, F., Fang, W., Jiang, J., & Chen, S. (2013). Changes in leaf morphology, antioxidant activity and photosynthesis capacity in two different drought-tolerant cultivars of chrysanthemum during and after water stress. Scientia Horticulturae, 161, 249-258. https://doi.org/10.1016/j.scienta.2013.07.015
Taiz, L., & Zieger, E. (1998). Stress physiology. Sunderland : Sinauer Associates, 725-757.
Tatari, M., Jafari, A. , Shirmardi, M., & Mohamadi, M. (2019). Using Morphological and Physiological Traits to Evaluate Drought Tolerance of Pear Populations (Pyrus spp.). International Journal of Fruit Science, 20(4), 1-18. https://doi.org/10.1080/15538362.2019.1697410
Troll W., & Lindsley J. (1955). A photometric method for the determination of proline. Journal of Biological Chemistry, 215, 655-660. https://doi.org/10.1016/S0021-9258(18)65988-5
Wahbi, S., Wakrim, R., Aganchich, B., Tahi, H., & Serraj, R. (2005). Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate: I. Physiological and agronomic responses. Agriculture Ecosystem and Environment, 106(2), 289-301. https://doi.org/10.1016/j.agee.2004.10.015
Zahran, S.S., & Razia, I.M. (2009). Growth stomata aperture, biochemical changes and branch anatomy in mango (Mangifera indica) cv chkanan in response to root restriction and water stress. Scientia Horticulturae, 123, 58-67. https://doi.org/10.1016/j.scienta.2009.07.022