Document Type : Original Article

Authors

1 Division of Basic Sciences and Humanities, Faculty of Agriculture, SKUAST-K, Wadoora, Jammu & Kashmir-193201, India

2 Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Jammu & Kashmir- 190025, India

Abstract

Purpose: Given the rising number of novel coronavirus named SARS-CoV-2 (COVID-19) cases, the purpose of the present study was to explore saffron bioactive compounds against COVID-19 since saffron is used in fever, bronchitis, cold, respiratory disorders and is recognized for its anti-inflammatory, antioxidant and immunomodulatory effects. Research method: COVID-19 engages the host cell surface receptor angiotensin-converting enzyme 2 (ACE2) through its spike protein receptor-binding domain (RBD). The idea was to check atomistic interaction of these bioactive molecules with ACE2 for obstructing its interaction with RBD, in order to screen and assess the likelihood of these molecules for drug development. Based on ligands' molecular weight, we chose smaller bioactive molecules (picrocrocin, safranal, lutein) for interaction with cell ACE2 of the host. Findings: Flexible molecular docking followed by atomic level interaction study indicated that lutein and picrocrocin form various interactions with different amino acid residues of ACE2. In depth analysis revealed that these interactions with the majority of the residues of ACE2 could be crucial for RBD binding and, therefore, can disrupt the interaction between RBD and ACE2. The study provides a hit for further analysis using in vitro, animal models and clinical studies. Limitations: In this study dynamic approaches such as molecular dynamics and semiemperical quantum mechanical (SQM) methods have not been used. Originality/Value: By preventing the interaction of RBD with ACE2, lutein and picrocrocin may prove helpful in the development of therapeutics for COVID-19 management.

Keywords

Main Subjects

Adedeji, A. O., Severson, W., Jonsson, C., Singh, K., Weiss, S. R., & Sarafianos, S. G. (2013). Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. Journal of Virology, 87(14), 8017-8028.
Alunno, A., Padjen, I., Fanouriakis, A., & Boumpas, D. T. (2019). Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent. Cells, 8(8), 898.
Baek, M., Shin, W.-H., Chung, H. W., & Seok, C. (2017). GalaxyDock BP2 score: a hybrid scoring function for accurate protein–ligand docking. Journal of Computer-Aided Molecular Design, 31(7), 653-666.
Baig, A. M., Khaleeq, A., Ali, U., & Syeda, H. (2020). Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chemical Neuroscience, 11(7), 995-998.
Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., Yu, P., Xu, Y., & Qi, F. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 583(7818), 830-833.
Boriskin, Y., Leneva, I., Pecheur, E.-I., & Polyak, S. (2008). Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Current Medicinal Chemistry, 15(10), 997-1005.
Boskabady, M. a., & Aslani, M. (2006). Relaxant effect of Crocus sativus (saffron) on guinea‐pig tracheal chains and its possible mechanisms. Journal of Pharmacy and Pharmacology, 58(10), 1385-1390.
Boskabady, M. H., Gholamnezhad, Z., Ghorani, V., & Saadat, S. (2019). The effect of crocus sativus (saffron) on the respiratory system: traditional and experimental evidence. Sci Spices Culinary Herbs-Latest Lab Pre-Clin Clin Stud, 1, 30-54.
Brahmbhatt, R. V. (2020). Herbal medicines in management and prevention of COVID-19. Journal of Pharmacognosy and Phytochemistry, 9(3), 1221-1223.
Bukhari, S. I., Pattnaik, B., Rayees, S., Kaul, S., & Dhar, M. K. (2015). Safranal of Crocus sativus L. inhibits inducible nitric oxide synthase and attenuates asthma in a mouse model of asthma. Phytotherapy Research, 29(4), 617-627.
Chen, W.-H., Strych, U., Hotez, P. J., & Bottazzi, M. E. (2020). The SARS-CoV-2 vaccine pipeline: an overview. Current Tropical Medicine Reports, 7(2), 61-64.
Colson, P., Rolain, J.-M., & Raoult, D. (2020). Chloroquine for the 2019 novel coronavirus SARS-CoV-2. In: Elsevier.
Devaux, C. A., Rolain, J.-M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents, 55(5), 105938.
Florindo, H. F., Kleiner, R., Vaskovich-Koubi, D., Acúrcio, R. C., Carreira, B., Yeini, E., Tiram, G., Liubomirski, Y., & Satchi-Fainaro, R. (2020). Immune-mediated approaches against COVID-19. Nature Nanotechnology, 15(8), 630-645.
Ganai, S. A. (2021). Characterizing binding intensity and energetic features of histone deacetylase inhibitor pracinostat towards class I HDAC isozymes through futuristic drug designing strategy. In Silico Pharmacol, 9(1), 18. https://doi.org/10.1007/s40203-021-00077-y
Garcia, S. (2020). Pandemics and traditional plant-based remedies. A historical-botanical review in the era of Covid19. Frontiers in Plant Science, 11, 1353.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., & Nitsche, A. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271-280. e278.
Hu, T. Y., Frieman, M., & Wolfram, J. (2020). Insights from nanomedicine into chloroquine efficacy against COVID-19. Nature Nanotechnology, 15(4), 247-249.
Husaini, A. M. (2014). Challenges of climate change: Omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production. GM crops & food, 5(2), 97-105. https://doi.org/doi:10.4161/gmcr.29436
Husaini, A. M., Jan, K. N., & Wani, G. A. (2021). Saffron: A potential drug-supplement for severe acute respiratory syndrome coronavirus (COVID) management. Heliyon, e07068. https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e07068
Husaini, A. M., & Wani, A. B. (2020). Prospects of organic saffron kitchen gardens as a source of phytochemicals for boosting immunity in common households of semi-arid regions: A case study of trans-Himalayan Kashmir valley. Journal of Pharmacognosy and Phytochemistry, 9(6), 237-243. https://doi.org/https://doi.org/10.22271/phyto.2020.v9.i6d.12889
Jiang, S., Shi, Z., Shu, Y., Song, J., Gao, G. F., Tan, W., & Guo, D. (2020). A distinct name is needed for the new coronavirus. The Lancet, 395(10228), 949.
Kadam, R. U., & Wilson, I. A. (2017). Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proceedings of the National Academy of Sciences, 114(2), 206-214.
Kafi, M., Kamili, A. N., Husaini, A. M., Ozturk, M., & Altay, V. (2018). An expensive spice saffron (Crocus sativus L.): a case study from Kashmir, Iran, and Turkey. In Global perspectives on underutilized crops (pp. 109-149). Springer. https://doi.org/https://doi.org/10.1007/978-3-319-77776-4_4
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B., Thiessen, P., & Yu, B. (2018). Nucleic Acids Research, 47, D1102–D1109.
Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215-220. https://doi.org/10.1038/s41586-020-2180-5
Liu, Q., Xiong, H.-r., Lu, L., Liu, Y.-y., Luo, F., Hou, W., & Yang, Z.-q. (2013). Antiviral and anti-inflammatory activity of arbidol hydrochloride in influenza A (H1N1) virus infection. Acta Pharmacologica Sinica, 34(8), 1075-1083.
Malik, Y. S., Sircar, S., Bhat, S., Sharun, K., Dhama, K., Dadar, M., Tiwari, R., & Chaicumpa, W. (2020). Emerging novel coronavirus (2019-nCoV)—current scenario, evolutionary perspective based on genome analysis and recent developments. Veterinary Quarterly, 40(1), 68-76.
Mir, M. A., Ganai, S. A., Mansoor, S., Jan, S., Mani, P., Masoodi, K. Z., Amin, H., Rehman, M. U., & Ahmad, P. (2020). Isolation, purification and characterization of naturally derived Crocetin beta-d-glucosyl ester from Crocus sativus L. against breast cancer and its binding chemistry with ER-alpha/HDAC2. Saudi Journal of Biological Sciences, 27(3), 975-984. https://doi.org/10.1016/j.sjbs.2020.01.018
Mitjà, O., Corbacho-Monné, M., Ubals, M., Tebe, C., Peñafiel, J., Tobias, A., Ballana, E., Alemany, A., Riera-Martí, N., & Pérez, C. A. (2020). Hydroxychloroquine for early treatment of adults with mild Covid-19: a randomized-controlled trial. Clinical Infectious Diseases.
Mokhtari-Zaer, A., Khazdair, M. R., & Boskabady, M. H. (2015). Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms. Avicenna Journal of Phytomedicine, 5(5), 365.
Nikhat, S., & Fazil, M. (2020). Overview of Covid-19; its prevention and management in the light of Unani medicine. Science of the total Environment, 728, 138859.
Petitprez, F., de Reyniès, A., Keung, E. Z., Chen, T. W.-W., Sun, C.-M., Calderaro, J., Jeng, Y.-M., Hsiao, L.-P., Lacroix, L., & Bougoüin, A. (2020). B cells are associated with survival and immunotherapy response in sarcoma. Nature, 577(7791), 556-560.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605-1612.
Prabakaran, P., Gan, J., Feng, Y., Zhu, Z., Choudhry, V., Xiao, X., Ji, X., & Dimitrov, D. S. (2006). Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. Journal of Biological Chemistry, 281(23), 15829-15836.
Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443-W447.
Shankaran, K. S., Ganai, S. A., K, P. A., P, B., & Mahadevan, V. (2017). In silico and In vitro evaluation of the anti-inflammatory potential of Centratherum punctatum Cass-A. Journal of Biomolecular Structure and Dynamics, 35(4), 765-780. https://doi.org/10.1080/07391102.2016.1160840
Shi, L., Xiong, H., He, J., Deng, H., Li, Q., Zhong, Q., Hou, W., Cheng, L., Xiao, H., & Yang, Z. (2007). Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Archives of Virology, 152(8), 1447-1455.
Shin, W. H., Kim, J. K., Kim, D. S., & Seok, C. (2013). GalaxyDock2: Protein–ligand docking using beta‐complex and global optimization. Journal of Computational Chemistry, 34(30), 2647-2656.
Singh, B., Ryan, H., Kredo, T., Chaplin, M., & Fletcher, T. (2020). Chloroquine or hydroxychloroquine for prevention and treatment of COVID‐19. The Cochrane Database of Systematic Reviews, 2020(4).
Towler, P., Staker, B., Prasad, S. G., Menon, S., Tang, J., Parsons, T., Ryan, D., Fisher, M., Williams, D., & Dales, N. A. (2004). ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. Journal of Biological Chemistry, 279(17), 17996-18007.
Vickers, C., Hales, P., Kaushik, V., Dick, L., Gavin, J., Tang, J., Godbout, K., Parsons, T., Baronas, E., & Hsieh, F. (2002). Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. Journal of Biological Chemistry, 277(17), 14838-14843.
Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., Seidah, N. G., & Nichol, S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal, 2(1), 1-10.
Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein engineering, design and selection, 8(2), 127-134.
WHO. (2021). WHO Coronavirus Disease (COVID-19) Dashboard. (https://covid19.who.int/)
Xia, H., & Lazartigues, E. (2008). Angiotensin‐converting enzyme 2 in the brain: properties and future directions. Journal of neurochemistry, 107(6), 1482-1494.
Zeinali, M., Zirak, M. R., Rezaee, S. A., Karimi, G., & Hosseinzadeh, H. (2019). Immunoregulatory and anti-inflammatory properties of Crocus sativus (Saffron) and its main active constituents: A review. Iranian Journal of Basic Medical Sciences, 22(4), 334.
Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., & Huang, C.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273.