Document Type : Original Article

Authors

Department of Food Production, Faculty of Food and Agriculture, University of the West Indies, St. Augustine Campus, Trinidad

Abstract

Purpose: Moringa oleifera is a multi-purpose plant. The growth curve would determine harvest date and maturity indices. Analysis of proximate and mineral constituents would highlight nutritional and health benefits. Research methods: Investigations were conducted on growth curve parameters, maturation indices, proximate and mineral compositions of moringa plant parts (Moringa oleifera) on four-year-old tress from 2016-2019. Findings: The growth curve depicted a single sigmoid shape. Pods harvested 25 days after flowering were immature (M1), with a light-green skin colour, firm, tender seeds, and light greenish-cream flesh and seeds. Pods attained horticultural maturity with optimum cooking quality 32 days (M2) post-anthesis with corresponding maturity indices being firm, light greenish-cream-flesh and well–formed seed. Dried partially senesced over-matured pods (M3), harvested after 51 days, had a light-brown dermal layer enclosing dark brown firm seeds with the highest fat and crude fiber being 200.3 g/kg and 314.5 g/kg. Green-tender seeds showed the highest crude protein content of 296.0 g/kg. Immature leaves (L1) had the highest dry matter content while stage 2 leaves had the highest ash content. Matured pods showed the highest moisture content. Mineral contents of stage 3 leaves (L3) consisted of magnesium (4255.6ppm) while stage 1 leaves had the most iron (147.0 ppm) and potassium (30210.0ppm). Leaves at stage 2 had the most sodium (2547.9 ppm) and boron (23.1 ppm). Research limitations: Limited cultivars.  Originality/Value: Maturity indices on the growth curve confirmed the multi-purpose nature of the moringa plant and benefits to the food and health industries.

Keywords

Main Subjects

 Abdulkadir, A., Zawawi, R. D. D., & Jahan, S. (2016). Proximate and phytochemical screening of different parts of Moringa oleifera. Russian Agricultural Sciences, 42(1), 34-36. http://dx.doi.org/10.3103/S106836741601002X.
Aborisade, A., Adetutu, A., & Owoade, A. (2017). Phytochemical and proximate analysis of some medicinal leaves. Clinical Medicine Research, 6(6), 209-214. http://dx.doi.org/10.11648/j.cmr.20170606.16.
(AOAC) Association of Official Agricultural Chemist. 1980. Official methods of analysis. United States of America: AOAC International.
 Arshad, Y., & Takácsné, H. M. (2020). Study on moringa tree (Moringa oleifera Lam.) leaf extract in organic vegetable production: A review. Research on Crops, 21(2), 402-414. http://dx.doi.org/10.31830/2348-7542.2020.067.
Aremu, K. A., & Akintola, A. (2016). Drying kinetics of moringa (Moringa oleifera) seeds. Journal of Life Sciences and Technologies, 4(1), 7-10. http://dx.doi.org/10.18178/jolst.4.1.7-10.
Asogwa, I. S., Chioma, N. A., & Obiajulu, I. E. (2019). The potential of Moringa oleifera in contributing to food and nutrition security in the developing countries. International Journal of Food and Nutritional Sciences, 8(1), 58-65. https://www.ijfans.org/article.asp?issn=2319-1775.
Bamishaiye, E. I., Olayemi, F. F., Awagu, E. F., & Bamshaiye, O. M. (2011). Proximate and phytochemical composition of Moringa oleifera leaves at three stages of maturation. Advance Journal of Food Science and Technology, 3(4), 223-225. ISSN 2042-4868.
Bridgemohan P., Goordeen, A., Mohammed, M., & Bridgemohan, R. (2020). Review of the agro-ecology, phytochemistry, postharvest technology and utilization of moringa (Moringa oleifera Lam.). Journal of Horticulture and Postharvest Research, 3(2), 311-332. http://dx.doi.org/10.22077/JHPR.2020.3037.1116.
Cronin, S. J. F., Woolf, C. J., Weiss, G., & Penninger, J. M. (2019). The role of iron regulation in immunometabolism and immune related diseases. Frontiers in Molecular Biosciences, 6(116), 1-19. doi.org/10.3389/fmolb.2019.00116.
Din, S., Wani, R. A., Ab, Waheed., Wani., F., Nisar, F., Farwah, S., Rizvi, S., Tajamul, F., & Nisar, S. (2019). Fruit set and development: Pre-requisites and enhancement in temperate fruit crops. Journal of Pharmacognosy and Phytochemistry, 8(2), 1203.-1216. E-ISSN: 2278-4136.
Erkhan, M., & Kader, A. A. (2011,). Pomegranate (Punica granatum). In E. M. Yahia, Postharvest Biology and Technology of Tropical and Subtropical Fruits Chapter 14. United Kingdom Woodhead Publishing Series in Food Science, Technology and Nutrition. (pp. 287-311). http://dx.doi.org/10.1533/9780857092618.287.
Gupta, J., Gupta, A., & Gupta, A. K. (2014). “Determination of trace metals in the stem bark of Moringa oleifera Lam”, International Journal of Chemical Studies 2(4), 39-42. P-ISSN 2349–8528.
Horwitz, W., & Latimer, G. W. (Ed.). (2005). Official Method of Analysis. Gaithersburg, Maryland, USA: AOAC International.
Koul, B, & Chase, N. (2015). Moringa oleifera Lam: Panacea to several maladies. Journal of Chemical and Pharmaceutical Research, 7(6), 687-707. ISSN: 0975-7384.
Kozat, S. (2008). Serum T3 and T4 Concentrations in lambs with nutritional myodegeneration. Journal Veterinary Internal Medicine, 21(5), 1135-1137. http://dx.doi.org/10.1111/j.1939-1676. 2007.tb03078. x.
Kundan, K, Pathak, K. A., Yadav, D. S., Bujarbaruah K. M., Bharali R., & Shukla R. (2006). Passion Fruit -Technical Bulletin. Meghalaya: The Director ICAR Research Complex for NEH Region. http://dx.doi.org/10.13140/RG.2.2.25156.01925.
Manju, C. S., Vaishnava, K. R. K.., Meel, P., Kumar, S., & Karnani, M. (2018). Proximate analysis and chemical composition of Moringa oleifera seeds and its use in broilers diet. International Journal of Chemical Studies, 6(4), 563-566.
Moyo B., Masika P. J., Hugo A., & Muchenje, V. (2011). Nutritional characterization of moringa (Moringa oleifera Lam.) leaves. African Journal of Biotechnology, 10(60), 12925-12933. http://dx.doi.org/10.5897/AJB10.1599.
Mulyaningsih, T., & Yusuf, S. (2018). Determination of minerals content in leaves of Moringa oleifera by neutron activation analysis. Ganendra Journal of Nuclear Science and Technology, 21(1), 11-16. http://dx.doi.org/10.17146/gnd.2018.21.1.3683.
National Research Council (NRC) (1989). Food and Nutrition Board, Commission on Life Sciences and Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. Recommended Dietary Allowances. Washington, D. C: National Academy Press. http://dx.doi.org/10.17226/1349.
Nielsen, F.H., & Eckhert, C.D. (2019). Boron. Advances in Nutrition, 11(2), 461-462. http://dx.doi.org/10.1093/advances/nmz110.
Oduro, I., Ellis W. O., & Owusu, D. (2008). Nutritional potential of two leafy vegetables: Moringa oleifera and Ipomoea batatas leaves. Scientific Research and Essay, 3(2), 57-60.
Palada, M. C., & Chang, L. C. (2003). Suggested cultural practices for moringa. International Cooperative Guide, 3-545. AVRDC pub # 03-545.
Pearson, D., & Cox, H. E. (1976). Chemical Analysis of Foods. London: Churchill Livingstone,
Radovich, T., & Elevitch, C. R. (Ed.). (2009). Farm and forestry production and marketing profile for Moringa (Moringa oleifera). Hawai: Permanent Agriculture Resources (PAR).
Shih, M., Chang, C. M., Kang, S. M., & Tsai., M. L. (2011). Effect of different parts (Leaf, Stem and Stalk) and Seasons (summer and winter) on the chemical compositions and antioxidant activity of Moringa oleifera. International Journal of Molecular Sciences 12(9), 6077-6088. http://dx.doi.org/ 10.3390/ijms12096077.
Screeja, M., Jayasri, P., Keerthi, N., Yeshashwini., J. & Praveen J. (2021). Moringa oleifera: A review on nutritive importance and its potential use as nutraceutical plant. Journal of Medicinal Plants Studies, 9(2),15-17. ISSN 2394-0530.
Sodamade, A., Bolaji, O. S., & Adeboye, O. O. (2013). Proximate analysis, mineral contents and functional properties of Moringa oleifera leaf protein concentrate. IOSR Journal of Applied Chemistry, 4(6), 47–51. ISSN: 2278-5736.
Umar, K. J., Hassan, L. G., Dangoggo, S. M., Inuwa, M., & Almustapha, M. N. (2007). Nutritional content of Melochia corchorifolia (Linn) Leaves. International Journal of Biological Chemistry 1(4), 250-255. http://dx.doi.org/10.3923/ijbc.2007.250.255.
Vasilakakis, M., Papadopoulos, K., & Papageorgion, E. (1997). Factors affecting the fruit size of ‘Hayward’ kiwifruit. Acta Horticulturae, 444, 419-424. http://dx.doi.org/10.17660/ActaHortic.1997.444.6
Yahia, E. (2004). Sapodilla and related fruits: In K. C. Gross, C. Y. Wang, & M.  Saltveit. U.S. Dept. Agric. Handbook #66 The Commercial Storage of Fruits, Vegetables and Florist and Nursery Stocks. Beltsville: USDA ARS. (pp. 543-549). https://www.ars.usda.gov/ARSUserFiles/oc/np/.
Wösten, H.A. &Wessels, J.G. (1997). Hydrophobins, from molecular structure to multiple functions in fungal development. Mycoscience 38(3), 363-374. http://dx.doi.org/10.1007/BF02464099.