Document Type : Original Article

Authors

1 Crop and Horticultural Science Research Department, Southern Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran

2 Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

Abstract

Purpose: This experiment aimed find the relationship between morphological, physiological traits, metabolites, with SSR markers. Research method: To investigate the relationship between quantitative traits and SSR (Simple sequence repeat) markers, an experiment was conducted under both field and laboratory conditions at Zanjan University. In this experiment, 20 SSR primers were used and agronomic and physiological traits with secondary metabolites were measured during the growing season. Findings: Amplified primers generated a total of 38 bands and the average number of bands in all locus was 2.38 bands. The highest number of alleles (5 alleles) and the polymorphic information content (0.9) were for the A2 primer. The stepwise regression analysis results showed that the studied primers (10 primers) had a significant relationship with most traits and the highest R2 in the first year was harvest index (79%), dry weight of stigma (69%), fresh weight of flower (62%), and yield (62%). In the second year, harvest index (67%), number of leaves (65%), number of flowers (61%), and yield (64%) had the highest coefficient of determination. The C25 and C50 primers were associated with 5 and 4 quantitative traits in 2014 and 4 and 3 quantitative traits in 2015, respectively. The C25 and C50 primers identified 2 and 3 alleles in the study population respectively, and considering the number of identified loci, it can be considered as the important primers concerning quantitative traits. The A8, A10, A48 and A2 primers were associated with at least more than 4 traits during the two years of experiment. According to the observed relationship, these marker loci can be used to select ecotypes with marker-assisted in saffron populations. Limitations: No limitations to report. Originality/Value: C50, C25, A8, A2, and C36 primers are candidate markers in marker-assisted selection saffron breeding programs.

Keywords

Main Subjects

Abbasi, Z., Majidi, M. M., Arzani, A., Rajabi, A., Mashayekhi, P., & Bocianowski, J. (2015). Association of SSR markers and morpho-physiological traits associated with salinity tolerance in sugar beet (Beta vulgaris). Euphytica, 205(3), 785-797. http://doi.org/10.1007/s10681-015-1408-1
Alavi-Kia, S. S., Mohammadi, S. A., Aharizad, S., & Moghaddam, M. (2008). Analysis of genetic diversity and phylogenetic relationships in crocus genus of Iran using inter-retrotransposon amplified polymorphism. Biotechnology & Biotechnological Equipment, 22(3), 795-800. http://doi.org/10.1080/13102818.2008.10817555.
Ashraf, M., & Harris, P.J. (2005). Abiotic stresses: Plant resistance through breeding and molecular approaches. USA, Binghamton: Food Products Press.
Babaei, S., Talebi, M., Bahar, M., & Zeinali, H. (2014). Analysis of genetic diversity among saffron (Crocus sativus L.) accessions from different regions of Iran as revealed by SRAP markers. Sciatica Horticulture, 171, 27-31. http://doi.org/10.1016/j.scienta.2014.03.033
Bayat, M., Amirnia, R., Özkan, H., Gedik, A., Ates, D., Rahimi. M., & Tanyulac, B. (2018a). Identification of markers associated with traits for use in marker-assisted selection in saffron. Genetika, 50(3), 971-982. http://doi.org/ 10.2298/GENSR1803971B
Bayat, M.,  Amirnia, R., Özkan, H., Gedik, A., Ates, D., Tanyulac, B., & Rahimi. M. (2018b). Diversity and phylogeny of saffron (Crocus sativus L.) accessions based on iPBS markers. Genetika, 50(1), 33-44. http://doi.org/10.2298/GENSR1801033B
Breseghello, F., & Sorrells. M.E. (2006). Association analysis as a strategy for improvement of quantitative traits in plants. Crop Science, 46(3), 1323-1330. http://doi.org/10.2135/cropsci2005.09-0305
Gebhardt, C., Ballvora, A., Walkemeier, B., Oberhagemann P., & Schüler. K. (2004). Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Molecular Breeding, 13, 93-102. http://doi.org/10.1023/B:MOLB.0000012878.89855.df
Ghislain, M., Zhang, D., Fazardo, D., Huamann, Z., & Hismans, R.H. (1999). Marker-assisted sampling of the cultivated Andean potato Solanum fureja collection using RAPD markers. Genetic Resources and Crop Evolution, 46, 547-555. http://doi.org/10.1023/A:1008724007888
Grilli-Caiola, M., & Canini, A. (2004). Ultrastructure of chromoplasts and other plastids in Crocus sativus L. (Iridaceae). Plant Biosystems, 138, 43-52. http://doi.org/ 10.1080/11263500410001684116
Han, Y. C., Teng, C. Z., & Zhong, S. (2007). Genetic variation and clonal diversity in population of Nelumbo nucifera (Neloumbonaceae) in central China detected by ISSR markers. Aguatic Botany, 86, 67-75. http://doi.org/10.1016/j.aquabot.2006.09.007
Inostroza, L., del Pozo, A., Matus, I., Castillo, D., Hayes, P., Machado, S., & Corey, A. (2009). Association mapping of plant height, yield and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare sub sp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Molecular Breeding, 23, 365-376. http://doi.org/10.1007/s11032-008-9239-6
Iranian Standard & Industrial Research Institute (ISIRI). (2006). 259-2 Saffron (Crocus sativus L.).
Ivandic, V., Hackett, C.A., Nevo, E., Keith, R., Thomas, W.T.B., & Forster, B.P. (2002). Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Molecular Biology, 48, 511-527. http://doi.org/ 10.1023/A:1014875800036
Jalali-Heravi, M., Parastar H., & Ebrahimi-Najafabadi, H. (2010). Self-modeling curve resolution techniques applied to comparative analysis of volatile components of Iranian saffron from different regions. Analytica Chimica Acta, 662, 143-154. http://doi.org/10.1016/j.aca.2010.01.013
Jun, T.H., Van, K., Kim, M.Y., Lee, S.H., & Walker, D.R. (2008). Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 62, 179-191. http://doi.org/10.1007/s10681-007-9491-6
Keifi, F., & Beiki, A. H. (2012). Exploitation of random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) markers for genetic diversity of saffron collection. Journal of Medicinal Plants Research, 6(14), 2761-2768. http://doi.org/10.5897/JMPR11.834
Khadivi-Khub, A. (2014). Regression association analysis of fruit traits with molecular markers in cherries. Plant Systematics and Evolution, 300(5), 1163-1173. http://doi.org/10.1007/s00606-013-0953-0
Kraakman, A. T. W., Niks, R. E., Van den berg, P. M. M. M., Stam, P. & Van Eeuwijk, F.A. (2004). Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 168, 435-446. http://doi.org/10.1534/genetics.104.026831
Kumar, R., Singh, V., Devi, K., Sharma, M., Singh, M. K. & Ahuja, P. S. (2008). State of art of saffron (Crocus sativus L.) Agronomy: a comprehensive review. Food Reviews International, 25, 44–85. https://doi.org/10.1080/87559120802458503
Ministry of Agriculture Jihad (MAJ). (2020). Communications and information technology center. Available at www://amar.maj. ir/Portal/Home /Default.aspx? Category ID= 117564e0-507c-4565-9659-fbabfb4acb9b.
Namayandeh, A., Nemati, Z., Kamelmanesh, M. M., Mokhtari, M., & Mardi, M. (2013). Genetic relationships among species of Iranian crocus (Crocus spp.). Crop Breeding Journal, 3(1), 61-67. http://doi.org/10.22092/CBJ.2013.100451
Nei, M. (1973). Analysis of genetic diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70, 3321-3323.
Nemati, Z., Zeinalabedini, M., Mardi, M., Pirseyedian, S. M., Marashi, S. H. & Khayam Nekoui, S. M. (2012). Isolation and characterization of a first set of polymorphic microsatellite markers in saffron, Crocus sativus L. (Iridaceae). American Journal of Botany, 116(3), 359-368. http://doi.org/10.3732/ajb.1100531
RUAN, C. (2010). Germplasm-regression-combined marker-trait association identification in plants. African Journal of Biotechnology, 9(5), 573-580. http://doi.org/10.5897/AJB09.001
Rubio-Moraga, A., Castillo-López, R., Gómez- Gómez, L., & Ahrazem, O. (2009). Saffron is a monomorphic species as revealed by RAPD, ISSR and microsatellite analyses. BMC Research Notes, 2, 189-193. http://doi.org/10.1186/1756-0500-2-189
Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., & Allard, R. W. (1984). Ribosomal DNAsepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences, 81, 8014-8019. http://doi.org/10.1073/pnas.81.24.8014
Virk, P., Ford-Lloyd, B., Jackson, M., Pooni, H., Clemeno T. & Newburry, H. (1996). Marker-assisted prediction of agronomic traits using diverse rice germplasm. Third International Rice Genetics Symposium. Manila (Philippines). International Rice Research Institute.
Yousefi Javan, I., & Gharari, F. (2018). Genetic diversity in saffron (Crocus sativus L.) cultivars grown in Iran using SSR and SNP markers. Journal of Agricultural Science and Technology, 20, 1213-1226.