Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran

2 Department of Biology, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran

Abstract

Purpose: The main purpose of this study is to investigate the chemical, physicochemical, and antibacterial properties of Agaricus bisporus collected from the Zarnagh region (province of East Azerbaijan, northwestern Iran), to enhance health quality, and economic exploitation in pharmaceutics, food, and agriculture industries. The methanol extracts of Agaricus bisporus mushroom (maceration extraction method), was screened for chemicals properties. Research Method: All chemicals were purchased from Merck (Darmstadt, Germany). Fruiting bodies of wild edible mushrooms (A. bisporus) were collected from the Z. region. The methanolic extracts were evaluated by Gas Chromatography-Mass Spectrometry and High-performance liquid chromatography coupled to the ultraviolet detector analysis. The antibacterial activities were carried out by using three bacteria. Findings: The results of chemical and nutritional factors include crude protein (46.62 ± 0.19 g/100g), crude fat (10.59 ± 0.13 g/100g), fiber (17.76 ± 0.32 g/100g), carbohydrate (1.56 ± 0.27 g/100g) and total energy (288.3 ± 2.61 Kcal). Potassium, iron, calcium, phosphorus, sodium, and copper in considerable quantities were found in the wild edible mushroom from the Z. region. The eight compounds were identified in the crude methanolic extract by GC-MS analysis. Rutin, myricetin, quercetin, and kaempferol identified by HPLC-UV analysis. The highest inhibitory activity was noticed against E. coli (PTCC 1399) with 22±0.2 mm (diameter of inhibition zone) for methanol extract. Limitations: There was no significant limitation to the report. Originality/Value: Briefly, there is no much information about the chemical profile of wild mushrooms of Iran, and this work is the first study on the chemical and antibacterial properties of Agaricus bisporus mushrooms.

Keywords

Main Subjects

Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. Xi’an Jiaotong University. https://doi.org/10.1016/j.jpha.2015.11.005
Barros, L., Dueñas, M., Ferreira, I. C. F. R., Baptista, P., & Santos-Buelga, C. (2009). Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food and Chemical Toxicology, 47(6), 1076-1079. https://doi.org/10.1016/j.fct.2009.01.039
Borokini, F., Lajide, L., Olaleye, T., Boligon, A., Athayde, M., & Adesina, I. (2016). Chemical profile and antimicrobial activities of two edible mushrooms (Termitomyces robustus and Lentinus squarrosulus). Journal of Microbiology, Biotechnology and Food Sciences, 05(05), 416-423. https://doi.org/10.15414/jmbfs.2016.5.5.416-423
Butron, A., Llorente, O., Fernandez, J., Meaurio, E., & Sarasua, J. R. (2019). Morphology and mechanical properties of poly (ethylene brassylate) / cellulose nanocrystal composites. Carbohydrate Polymers, 221, 137-145. https://doi.org/10.1016/j.carbpol.2019.05.091
Costa, R., Tedone, L., De Grazia, S., Dugo, P., & Mondello, L. (2013). Multiple headspace-solid-phase microextraction: An application to quantification of mushroom volatiles. Analytica Chimica Acta, 770, 1-6. https://doi.org/10.1016/j.aca.2013.01.041
Cvetanović, A., Švarc-Gajić, J., Zeković, Z., Jerković, J., Zengin, G., Gašić, U., Tešić, Ž., Mašković, P., Soares, C., Fatima Barroso, M., Delerue-Matos, C., & Đurović, S. (2019). The influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chemistry, 271, 328–337. https://doi.org/10.1016/j.foodchem.2018.07.154
Dulay, R. M. R., Miranda, L. A., Malasaga, J. S., Kalaw, S. P., Reyes, R. G., & Hou, C. T. (2017). Antioxidant and antibacterial activities of acetonitrile and hexane extracts of Lentinus tigrinus and Pleurotus djamour. Biocatalysis and Agricultural Biotechnology, 9, 141-144. https://doi.org/10.1016/j.bcab.2016.12.003
Dzah, C. S., Duan, Y., Zhang, H., Serwah Boateng, N. A., & Ma, H. (2020). Latest developments in polyphenol recovery and purification from plant by-products: A review. Trends in Food Science and Technology, 99, 375–388. Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.03.003
Gogavekar, S. S., Rokade, S. A., Ranveer, R. C., Ghosh, J. S., Kalyani, D. C., & Sahoo, A. K. (2014). Important nutritional constituents, flavour components, antioxidant and antibacterial properties of Pleurotus sajor-caju. Journal of Food Science and Technology, 51(8), 1483-1491. https://doi.org/10.1007/s13197-012-0656-5
Gründemann, C., Reinhardt, J. K., & Lindequist, U. (2020). European medicinal mushrooms: Do they have potential for modern medicine? – An update. Phytomedicine, 66, 153131. Elsevier GmbH. https://doi.org/10.1016/j.phymed.2019.153131
Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). molecules Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18, 2328–2375. https://doi.org/10.3390/molecules18022328
Liktor-Busa, E., Kovács, B., Urbán, E., Hohmann, J., & Ványolós, A. (2016). Investigation of Hungarian mushrooms for antibacterial activity and synergistic effects with standard antibiotics against resistant bacterial strains. Letters in Applied Microbiology, 62(6), 437-443. https://doi.org/10.1111/lam.12576
Ren, L., Hemar, Y., Perera, C. O., Lewis, G., Krissansen, G. W., & Buchanan, P. K. (2014). Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioactive Carbohydrates and Dietary Fibre, 3(2), 41-51. https://doi.org/10.1016/j.bcdf.2014.01.003
Rimantas, P. (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT - Food Science and Technology, 60(1). https://doi.org/10.1016/j.lwt.2014.08.007
Sjollema, J., Zaat, S. A., Fontaine, V., Ramstedt, M., Luginbuehl, R., Thevissen, K., Li, J., van der Mei, H. C., Busscher, H. J., Biomaterialia, A., & der Mei,  van. (2018). In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomaterialia, 70, 12-24. https://doi.org/10.1016/j.actbio.2018.02.001
Stojkoví, D., Reis, F. S., GlamočlijaGlamoˇGlamočlija, J., Cirí, A., Barros, L., L D Van Griensven, L. J., F R Ferreira, I. C., Sokoví, M., bisporus Emil Imbach, A. J., brasiliensis Wasser, A., & Didukh, M. (2014). Cultivated strains of Agaricus bisporus and A. brasiliensis: chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy. Food & Function, 5(7), 1602-1612. https://doi.org/10.1039/C4FO00054D.
Thanasekaran, J., Geraldine, P., Jayakumar, T., Thomas, P. A., & Geraldine, P. (2009). In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science and Emerging Technologies, 10, 228-234. https://doi.org/10.1016/j.ifset.2008.07.002
Wang, X. M., Zhang, J., Wu, L. H., Zhao, Y. L., Li, T., Li, J. Q., Wang, Y. Z., & Liu, H. G. (2014). A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chemistry, 151, 279-285. https://doi.org/10.1016/j.foodchem.2013.11.062
Yahia, E. M., Gutiérrez-Orozco, F., & Moreno-Pérez, M. A. (2017). Identification of phenolic compounds by liquid chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico and determination of their antioxidant activity and bioactive compounds. Food Chemistry, 226, 14-22. https://doi.org/10.1016/j.foodchem.2017.01.044
Yaltirak, T., Aslim, B., Ozturk, S., & Alli, H. (2009). Antimicrobial and antioxidant activities of Russula delica Fr. Food and Chemical Toxicology, 47(8), 2052-2056. https://doi.org/10.1016/j.fct.2009.05.029