Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. Xi’an Jiaotong University. https://doi.org/10.1016/j.jpha.2015.11.005
Barros, L., Dueñas, M., Ferreira, I. C. F. R., Baptista, P., & Santos-Buelga, C. (2009). Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food and Chemical Toxicology, 47(6), 1076-1079. https://doi.org/10.1016/j.fct.2009.01.039
Borokini, F., Lajide, L., Olaleye, T., Boligon, A., Athayde, M., & Adesina, I. (2016). Chemical profile and antimicrobial activities of two edible mushrooms (Termitomyces robustus and Lentinus squarrosulus). Journal of Microbiology, Biotechnology and Food Sciences, 05(05), 416-423. https://doi.org/10.15414/jmbfs.2016.5.5.416-423
Butron, A., Llorente, O., Fernandez, J., Meaurio, E., & Sarasua, J. R. (2019). Morphology and mechanical properties of poly (ethylene brassylate) / cellulose nanocrystal composites. Carbohydrate Polymers, 221, 137-145. https://doi.org/10.1016/j.carbpol.2019.05.091
Costa, R., Tedone, L., De Grazia, S., Dugo, P., & Mondello, L. (2013). Multiple headspace-solid-phase microextraction: An application to quantification of mushroom volatiles. Analytica Chimica Acta, 770, 1-6. https://doi.org/10.1016/j.aca.2013.01.041
Cvetanović, A., Švarc-Gajić, J., Zeković, Z., Jerković, J., Zengin, G., Gašić, U., Tešić, Ž., Mašković, P., Soares, C., Fatima Barroso, M., Delerue-Matos, C., & Đurović, S. (2019). The influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chemistry, 271, 328–337. https://doi.org/10.1016/j.foodchem.2018.07.154
Dulay, R. M. R., Miranda, L. A., Malasaga, J. S., Kalaw, S. P., Reyes, R. G., & Hou, C. T. (2017). Antioxidant and antibacterial activities of acetonitrile and hexane extracts of Lentinus tigrinus and Pleurotus djamour. Biocatalysis and Agricultural Biotechnology, 9, 141-144. https://doi.org/10.1016/j.bcab.2016.12.003
Dzah, C. S., Duan, Y., Zhang, H., Serwah Boateng, N. A., & Ma, H. (2020). Latest developments in polyphenol recovery and purification from plant by-products: A review. Trends in Food Science and Technology, 99, 375–388. Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.03.003
Gogavekar, S. S., Rokade, S. A., Ranveer, R. C., Ghosh, J. S., Kalyani, D. C., & Sahoo, A. K. (2014). Important nutritional constituents, flavour components, antioxidant and antibacterial properties of Pleurotus sajor-caju. Journal of Food Science and Technology, 51(8), 1483-1491. https://doi.org/10.1007/s13197-012-0656-5
Gründemann, C., Reinhardt, J. K., & Lindequist, U. (2020). European medicinal mushrooms: Do they have potential for modern medicine? – An update. Phytomedicine, 66, 153131. Elsevier GmbH. https://doi.org/10.1016/j.phymed.2019.153131
Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). molecules Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18, 2328–2375. https://doi.org/10.3390/molecules18022328
Liktor-Busa, E., Kovács, B., Urbán, E., Hohmann, J., & Ványolós, A. (2016). Investigation of Hungarian mushrooms for antibacterial activity and synergistic effects with standard antibiotics against resistant bacterial strains. Letters in Applied Microbiology, 62(6), 437-443. https://doi.org/10.1111/lam.12576
Ren, L., Hemar, Y., Perera, C. O., Lewis, G., Krissansen, G. W., & Buchanan, P. K. (2014). Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioactive Carbohydrates and Dietary Fibre, 3(2), 41-51. https://doi.org/10.1016/j.bcdf.2014.01.003
Rimantas, P. (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT - Food Science and Technology, 60(1). https://doi.org/10.1016/j.lwt.2014.08.007
Sjollema, J., Zaat, S. A., Fontaine, V., Ramstedt, M., Luginbuehl, R., Thevissen, K., Li, J., van der Mei, H. C., Busscher, H. J., Biomaterialia, A., & der Mei, van. (2018). In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomaterialia, 70, 12-24. https://doi.org/10.1016/j.actbio.2018.02.001
Stojkoví, D., Reis, F. S., GlamočlijaGlamoˇGlamočlija, J., Cirí, A., Barros, L., L D Van Griensven, L. J., F R Ferreira, I. C., Sokoví, M., bisporus Emil Imbach, A. J., brasiliensis Wasser, A., & Didukh, M. (2014). Cultivated strains of Agaricus bisporus and A. brasiliensis: chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy. Food & Function, 5(7), 1602-1612. https://doi.org/10.1039/C4FO00054D.
Thanasekaran, J., Geraldine, P., Jayakumar, T., Thomas, P. A., & Geraldine, P. (2009). In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science and Emerging Technologies, 10, 228-234. https://doi.org/10.1016/j.ifset.2008.07.002
Wang, X. M., Zhang, J., Wu, L. H., Zhao, Y. L., Li, T., Li, J. Q., Wang, Y. Z., & Liu, H. G. (2014). A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chemistry, 151, 279-285. https://doi.org/10.1016/j.foodchem.2013.11.062
Yahia, E. M., Gutiérrez-Orozco, F., & Moreno-Pérez, M. A. (2017). Identification of phenolic compounds by liquid chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico and determination of their antioxidant activity and bioactive compounds. Food Chemistry, 226, 14-22. https://doi.org/10.1016/j.foodchem.2017.01.044
Yaltirak, T., Aslim, B., Ozturk, S., & Alli, H. (2009). Antimicrobial and antioxidant activities of Russula delica Fr. Food and Chemical Toxicology, 47(8), 2052-2056. https://doi.org/10.1016/j.fct.2009.05.029