Abiri, R., Shaharuddin, N. A., Maziah, M., Yusof, Z. N. B., Atabaki, N., Sahebi, M., Valdiani, A., Kalhori, N., Azizi, P. & Hanafi, M. M., (2017). Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions.
Environmental and Experimental Botany,
134, pp.33-44.
https://doi.org/10.1016/j.envexpbot.2016.10.015
Ahmadi-Afzadi, M., Tahir, I., & Nybom, H. (2013). Impact of harvesting time and fruit firmness on the tolerance to fungal storage diseases in an apple germplasm collection.
Postharvest Biology and Technology,
82, 51-58.
https://doi.org/10.1016/j.postharvbio.2013.03.001
Ahmadi-Afzadi, M., Orsel, M., Pelletier, S., Bruneau, M., Proux-Wéra, E., Nybom, H., & Renou, J. P. (2018). Genome-wide expression analysis suggests a role for jasmonates in the resistance to blue mold in apple.
Plant Growth Regulation,
85(3), 375-387.
https://doi.org/10.1094/MPMI-21-5-0507
Alazem, M., Lin, K. Y., & Lin, N. S. (2014). The abscisic acid pathway has multifaceted effects on the accumulation of
Bamboo mosaic virus.
Molecular Plant-microbe Iteractions,
27(2), 177-189.
https://doi.org/10.1094/MPMI-08-13-0216-R
Bengtsson, T., Weighill, D., Proux-Wéra, E., Levander, F., Resjö, S., Burra, D. D., Moushib, L. I., Hedley, P. E., Liljeroth, E., Jacobson, D., & Andreasson, E. (2014). Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach.
BMC Genomics,
15(1), 1-19.
https://doi.org/10.1186/1471-2164-15-315
Broun, P., Poindexter, P., Osborne, E., Jiang, C. Z., & Riechmann, J. L. (2004). WIN1, a transcriptional activator of epidermal wax accumulation in
Arabidopsis.
Proceedings of the National Academy of Sciences,
101(13), 4706-4711.
https://doi.org/10.1073/pnas.0305574101
Çevik, V., Kidd, B. N., Zhang, P., Hill, C., Kiddle, S., Denby, K. J., Holub, E. B., Cahill, D. M., Manners, J. M., Schenk, P. M. & Beynon, J. (2012). MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in
Arabidopsis.
Plant Physiology,
160(1), 541-555.
https://doi.org/10.1104/pp.112.202697
Das, D. K. (2018). Expression of a bacterial chitinase (ChiB) gene enhances resistance against Erysiphae polygoni induced powdery mildew disease in the transgenic black gram (Vigna mungo L.) (cv. T9). American Journal of Plant Sciences, 9(08), 1759. https://doi.org/10.4236/ajps.2018.98128
Engelbrecht, J., & Van den Berg, N. (2013). Expression of defence-related genes against Phytophthora cinnamomi in five avocado rootstocks.
South African Journal of Science,
109(11-12), 1-8.
https://hdl.handle.net/10520/EJC145685
Fradin, E. F., Zhang, Z., Ayala, J. C. J., Castroverde, C. D., Nazar, R. N., Robb, J., Liu, C. M. & Thomma, B. P. (2009). Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiology, 150(1), 320-332. https://doi.org/10.1104/pp.109.136762
Gasic, K., Hernandez, A., & Korban, S. S. (2004). RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction.
Plant Molecular Biology Reporter,
22(4), 437-438.
https://doi.org/10.1007/BF02772687
Hodge, S., Thompson, G. A., & Powell, G. (2005). Application of DL-[beta]-aminobutyric acid (BABA) as a root drench to legumes inhibits the growth and reproduction of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Bulletin of Entomological Research, 95(5), 449. https://doi.org/10.1079/BER2005375
Huang, P. Y., Catinot, J., & Zimmerli, L. (2016). Ethylene response factors in
Arabidopsis immunity.
Journal Of Experimental Botany,
67(5), 1231-1241.
https://doi.org/10.1093/jxb/erv518
Iqbal, Z., Singh, Z., Khangura, R., & Ahmad, S. (2012). Management of citrus blue and green moulds through application of organic elicitors.
Australasian Plant Pathology,
41(1), 69-77.
https://doi.org/10.1007/s13313-011-0091-5
Iqbal, Z., Iqbal, M. S., Hashem, A., Abd_Allah, E. F., & Ansari, M. I. (2021). Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions.
Frontiers in Plant Science 12, 297.
https://doi.org/10.3389/fpls.2021.631810
Jung, S., Lee, T., Cheng, C.H., Buble, K., Zheng, P., Yu, J., Humann, J., Ficklin, S. P., Gasic, K., Scott, K. & Frank, M. (2019). 15 years of GDR: New data and functionality in the Genome Database for Rosaceae.
Nucleic Acids Research,
47(D1), D1137-D1145.
https://doi.org/10.1093/nar/gky1000
Komi, D. E. A., Sharma, L., & Cruz, C. S. D. (2018). Chitin and its effects on inflammatory and immune responses.
Clinical Reviews in Allergy & Immunology,
54(2), 213-223.
https://doi.org/10.1007/s12016-017-8600-0
Kumar, M., Brar, A., Yadav, M., Chawade, A., Vivekanand, V., & Pareek, N. (2018). Chitinases—potential candidates for enhanced plant resistance towards fungal pathogens.
Agriculture,
8(7), 88.
https://doi.org/10.3390/agriculture8070088
Li, T., Fan, P., Yun, Z., Jiang, G., Zhang, Z., & Jiang, Y. (2019). β-aminobutyric acid priming acquisition and defense response of mango fruit to
Colletotrichum gloeosporioides infection based on quantitative proteomics.
Cells, 8(9), 1029.
https://doi.org/10.3390/cells8091029
Lu, X., Sun, D., Rookes, J. E., Kong, L., Zhang, X., & Cahill, D. M. (2019). Nanoapplication of a resistance inducer to reduce
Phytophthora disease in pineapple (
Ananas comosus L.).
Frontiers in Plant Science,
10, 1238.
https://doi.org/10.3389/fpls.2019.01238
Martins, C. R., Hoffmann, A., Rombaldi, C. V., Farias, R. D. M., & Teodoro, A. V. (2013). Apple biological and physiological disorders in the orchard and in postharvest according to production system.
Revista Brasileira de Fruticultura,
35(1), 1-8.
https://doi.org/10.1590/S0100-29452013000100001.
Mosa, K., El-din, E. H., Ismail, A., El-Feky, F., & El-Refy, A. (2017). Molecular characterization of two AP2/ERF transcription factor genes from Egyptian tomato cultivar (Edkawy).
Plant Science Today,
4(1), 12-20.
https://doi.org/10.14719/pst.2017.4.1.269
Nair, R. A., Kiran, A. G., Sivakumar, K. C., & Thomas, G. (2010). Molecular characterization of an oomycete-responsive PR-5 protein gene from
Zingiber zerumbet.
Plant Molecular Biology Reporter,
28(1), 128.
https://doi.org/10.1007/s11105-009-0132-1
Navarro-González, S. S., Ramírez-Trujillo, J. A., Peña-Chora, G., Gaytán, P., Roldán-Salgado, A., Corzo, G., ... & Suárez-Rodríguez, R. (2019). Enhanced tolerance against a fungal pathogen and insect resistance in transgenic tobacco plants overexpressing an endochitinase gene from
Serratia marcescens.
International Journal of Molecular Sciences,
20(14), 3482.
https://doi.org/10.3390/ijms20143482
Pianzzola, M. J., Moscatelli, M., & Vero, S. (2004). Characterization of
Penicillium isolates associated with blue mold on apple in Uruguay.
Plant Disease,
88(1), 23-28.
https://doi.org/10.1094/PDIS.2004.88.1.23
Pieterse, C. M., Leon Reyes, H. A., Does, D., Verhage, A., Koornneef, A., van Pelt, J. A., & van Wees, S. C. (2012). Networking by small-molecule hormones in plant immunity. IOBC-WPRS Bulletin, 83, 77-80.
Pio, R., Souza, F. B. M. D., Kalcsits, L., Bisi, R. B., & Farias, D. D. H. (2018). Advances in the production of temperate fruits in the tropics.
Acta Scientiarum. Agronomy,
41(1), e39549.
https://doi.org/10.4025/actasciagron.v41i1.39549
Prasath, D., Balagopal, A., Mahantesh, V., Rosana, O. B., Jayasankar, S., & Anandaraj, M. (2014). Comparative study of pathogenesis-related protein 5 (PR5) of different Zingiberaceae species. Indian Journal of Biotechnology (IJBT), 13(2), 178-185. http://nopr.niscair.res.in/handle/123456789/29136
Poland, J. A., Balint-Kurti, P. J., Wisser, R. J., Pratt, R. C., & Nelson, R. J. (2009). Shades of gray: the world of quantitative disease resistance.
Trends in Plant Science, 14(1), 21-29.
https://doi.org/10.1016/j.tplants.2008.10.006
Quaglia, M., Baglivo, F., & Moretti, C. (2017). Postharvest β-aminobutyric-acid–primed resistance is not effective in the control of
Penicillium expansum Link. on ‘
Golden delicious’ apple fruit.
Crop protection,
102, 43-48.
https://doi.org/10.1016/j.cropro.2017.06.025
Ren, X., Kong, Q., Wang, P., Jiang, F., Wang, H., Yu, T., & Zheng, X. (2011). Molecular cloning of a PR-5 like protein gene from cherry Tomato and analysis of the response of this gene to abiotic stresses. Molecular Biology Reports, 38(2), 801-807.
Sanzani, S. M., Schena, L., De Girolamo, A., Ippolito, A., & González-Candelas, L. (2010). Characterization of genes associated with induced resistance against
Penicillium expansum in apple fruit treated with quercetin.
Postharvest Biology and Technology, 56(1), 1-11.
https://doi.org/10.1016/j.postharvbio.2009.11.010
Satková, P., Starý, T., Plešková, V., Zapletalová, M., Kašparovský, T., Činčalová-Kubienová, L., Luhová, L., Mieslerová, B., Mikulík, J., Lochman, J. & Petřivalský, M. (2017). Diverse responses of wild and cultivated tomato to BABA, oligandrin and oidium neolycopersici infection.
Annals of Botany,
119(5), 829-840.
https://doi.org/10.1093/aob/mcw188
Sauter, M., Moffatt, B., Saechao, M. C., Hell, R., & Wirtz, M. (2013). Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis.
Biochemical Journal,
451(2), 145-154.
https://doi.org/10.1042/BJ20121744
Shi, H., Zhang, Y., & Chen, L. (2019). Expression and regulation of
PpEIN3b during fruit ripening and senescence via integrating SA, glucose, and ACC signaling in pear (
Pyrus pyrifolia Nakai. Whangkeumbae).
Genes,
10(6), 476.
https://doi.org/10.3390/genes10060476
Tahir, I. I., & Nybom, H. (2013). Tailoring organic apples by cultivar selection, production system, and post-harvest treatment to improve quality and storage life.
HortScience,
48(1), 92-101.
https://doi.org/10.21273/HORTSCI.48.1.92
Van de Poel, B., & Van Der Straeten, D. (2014). 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!
Frontiers in Plant Science,
5, 640.
https://doi.org/10.3389/fpls.2014.00640
Vanderstraeten, L., & Van Der Straeten, D. (2017). Accumulation and transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: current status, considerations for future research and agronomic applications.
Frontiers in Plant Science,
8, 38.
https://doi.org/10.3389/fpls.2017.00038
Wang, J., Tian, N., Huang, X., Chen, L. Y., Schläppi, M., & Xu, Z. Q. (2009). The tall fescue turf grass class I chitinase gene FaChit1 is activated by fungal elicitors, dehydration, ethylene, and mechanical wounding.
Plant Molecular Biology Reporter,
27(3), 305-314.
https://doi.org/10.1007/s11105-008-0086-8
Wang, J., Cao, S., Wang, L., Wang, X., Jin, P., & Zheng, Y. (2018). Effect of β-aminobutyric acid on disease resistance against Rhizopus rot in harvested peaches.
Frontiers in Microbiology,
9, 1505.
https://doi.org/10.3389/fmicb.2018.01505
Worrall, D., Holroyd, G. H., Moore, J. P., Glowacz, M., Croft, P., Taylor, J. E., Paul, N. D. & Roberts, M. R. (2012). Treating seeds with activators of plant defence generates long‐lasting priming of resistance to pests and pathogens.
New Phytologist,
193(3), 770-778.
https://doi.org/10.1111/j.1469-8137.2011.03987.x
Wu, C. T. (2010). An overview of postharvest biology and technology of fruits and vegetables. In Technology on Reducing Post-Harvest Losses and Maintaining Quality of Fruits and Vegetables: Proceedings of 2010 AARDO Workshop.
Yang, D. L., Yang, Y., & He, Z. (2013). Roles of plant hormones and their interplay in rice immunity.
Molecular Plant,
6(3), 675-685.
https://doi.org/10.1093/mp/sst056
Zhang, Z., & Huang, R. (2010). Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor
TERF2/
LeERF2 is modulated by ethylene biosynthesis.
Plant Molecular Biology,
73(3), 241-249.
https://doi.org/10.1007/s11103-010-9609-4
Zhang, J. Y., Broeckling, C. D., Blancaflor, E. B., Sledge, M. K., Sumner, L. W., & Wang, Z. Y. (2005). Overexpression of WXP1, a putative Medicago truncatula AP2 domain‐containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). The Plant Journal, 42(5), 689-707. https://doi.org/10.1111/j.1365-313X.2005.02405.x