Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiolgy, 8, 971. https://doi.org/10.3389/fmicb.2017.00971.
Azarmi, F., Mozafari, V., Abbaszadeh Dahaji, P., & Hamidpour, M. (2016a). Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta Physiologiae Plantarum, 38, 21. https://doi.org/10.1007/s11738015-2032-3
Azarmi, F., Mozaffari, V., Hamidpour, M., & Abbaszadeh-Dahaji, P. (2016b). Interactive effect of fluorescent Pseudomonads rhizobacteria and Zn on the growth, chemical composition, and water relations of pistachio (
Pistacia vera L.) seedlings under NaCl stress.
Communications in Soil Science and Plant Analysis, 47(8), 955-972.
https://doi.org/10.1080/00103624.2016.1165833
Azarmi-Atajan, F. & Sayyari-Zohan, M. H. (2020). Alleviation of salt stress in lettuce (Lactuca sativa L.) by plant growth-promoting rhizobacteria. Journal of Horticulture and Postharvest Research, 3, 67-78. https://doi.org/10.22077/jhpr.2020.3013.1114
Chapman, H. D., & Pratt, P. F. (1961). Methods of analysis for soils, plants and waters. University of California, Riverside.
Elhaissoufi, W., Khourchi, S., Ibnyasser, A., Ghoulam, C., Rchiad, Z., Zeroual, Y., Lyamlouli, K., & Bargaz, A. (2020). Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization.
Frontiers in Plant Science, 11, 979. https://doi.org/
10.3389/fpls.2020.00979.
FAOSTAT (2020). Food and Agriculture Organization of the United Nations. Retrieved from FAOSTAT database,
http://ww1.faostat.org/ Accessed on 22 June 2020.
Fekri, M., Gharanjig, L. & Soliemanzadeh, A. (2015). Responses of growth and chemical composition of pistachio seedling to phosphorus fertilization under saline condition. Journal of Plant Nutrition, 38(2), 1836-1848. https://doi.org/10.1080/01904167.2015.1043375.
Jilani, G., Akram, A., Ali, R. M., Hafeez, F. Y., Shamsi, I. H., Chaudhry, A. N., & Chaudhry, A. G. (2007). Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Annals of Microbiolgy, 57, 177-183
Kang, J., Amoozegar, A., Hesterberg, D., & Osmond, D. L. (2011). Phosphorus leaching in a sandy soil as affected by organic and incomposted cattle manure. Geoderma, 161, 194-201. https://doi.org/10.1016/j.geoderma.2010.12.019
Khosravi, A., Zarei, M., & Ronaghi, A. (2018). Effect of PGPR, Phosphate sources and vermicompost on growth and nutrients uptake by lettuce in a calcareous soil.
Journal of Plant Nutrition, 41, 80-89.
https://doi.org/10.1080/01904167.2017.1381727
Kurek, E., Ozimek, E., Sobiczewski, P., Słomka, A., & Jaroszuk-Ścisel, J. (2013). Effect of Pseudomonas luteola on mobilization of phosphorus and growth of young apple trees (Ligol)-Pot experiment. Scientia Horticulturae, 164, 270-276. https://doi.org/10.1016/j.scienta.2013.09.012.
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.
Biochemical Society Transactions, 11, 591-592.
https://doi.org/10.1042/bst0110591
Liu, X., Jiang, X., He, X., Zhao, W., Cao, Y., Guo, T., Li, T., Ni, H., and Tang, X. (2019). Phosphate-solubilizing pseudomonas sp. strain p34-l promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. Journal of Plant Growth Regulation, 38, 1314-1324. https://doi.org/10.1007/s00344-019-09935-8.
Malhotra, H., Vandana, S., harma, S., & Pandey, R. (2018). Phosphorus Nutrition: plant growth in response to deficiency and excess” in Plant Nutrients and Abiotic Stress Tolerance, eds M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar, and B. Hawrylak-Nowak (Singapore: Springer Singapore), 171-190.
Marathe, R., Phatake, Y., Shaikh, A., Shinde, B., & Gajbhiye, M. (2017). Effect of IAA produced by Pseudomonas aeruginosa 6a (bc4) on seed germination and plant growth of Glycin max. Journal Experimental Biology and Agriculture Sciences, 5, 351-358. https://doi.org/10.18006/2017.5(3).351.358
Marschner, H. (1995). Mineral nutrient of higher plants. 2nd, Academic Press, New York. 889 pages.
Niu, S., Wu, M., Han, Y. I., Xia, J., Zhang, Z., Yang, H. & Wan, S. (2010). Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 16, 144-155.
Porra, R. J. (2002). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b.
Photosynthesis Research, 73, 149-156.
https://doi.org/10.1007/1-4020-3324-9-56
Razaq, M., Zhang, P., Shen, H., & Salahuddin. (2017). Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE 12(2), e0171321. https://doi.org/10.1371/journal. pone.0171321
Rodriguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319-339.
Shaharroona, B., Arshad, M., Zahir, Z. A., & Khalid, A. (2006). Performance of
Pseudomonas spp. Containing ACC-Deaminase for improving growth and yield of maize (
Zea mays L.) in the presence of nitrogenous fertilizer.
Soil Biology and Biochemistry, 38, 2971-2975.
https://doi.org/10.1016/j.soilbio.2006.03.024
Shahriaripour , R., Tajabadi Pour, A., & Mozaffari, V. (2011). Effects of salinity and soil phosphorus application on growth and chemical composition of pistachio seedlings.
Communications in Soil Science and Plant Analysis, 42, 144-158.
https://doi.org/10.1080/00103624.2011.535065.
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus, 2, 587-600. https://doi.org/10.1186/2193-1801-2-587
Sparks, D. L. (1996). Methods of soil analysis. Part. 3, chemical methods. Soil Science Society of America, Madison, Wisconsin, USA.
Yu, X., Liu, X., Zhu, T.H., Liu, GH., & Mao, C. (2012). Co-inoculation with phosphate-solubilzing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. European Journal of Soil Biology, 50, 112-117. https://doi.org/10.1016/j.ejsobi.2012.01.004.
Zhu, F., Qu, L., Hong, X., & Sun, X. (2011). Isolation and characterization of a phosphate solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evidence-based Complementary and Alternative Medicine, 2011, 615032. https://doi.org/ 10.1155/2011/615032.