Document Type : Original Article

Author

Department of Biology, Faculty of Basic Sciences, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

Abstract

Purpose: Purslane plant is used in the pharmaceutical and food industries. This study aimed to study some physiological and biochemical reactions of Portulaca oleracea to salinity stress and the effect of silica fertilizer application in reducing the harmful effects of salinity stress on climatic conditions of Behbahan city in southwestern of Iran. Research Method: Purslane seeds were planted in plastic pots. Salinity treatment was considered at two levels of 0 and 200 mM NaCl and silica fertilizer treatment were considered at two levels of 0 and 2g/l. Findings: Results revealed that with increase salinity concentration, plant height, amount of soluble sugar, amount of soluble protein and chlorophyll b significantly decreased. The use of silica fertilizer had a positive effect on the mentioned traits in comparison with its non-use. Based on the results, the use of silica fertilizer increased plant height, soluble sugar, and soluble protein by 16.19, 25.35 and 28.74%, respectively, compared to its non-use in salinity conditions on the Portulaca oleracea plant, which is very important due to the salinity of a large areas of agricultural lands in Iran. Research limitations: No limitations were founded. Originality/Value: This study showed that silica fertilizer, compared to its non-application, increased plant height and photosynthetic pigments and reduced the harmful effects of salinity stress on Portulaca oleracea. Therefore, both in the condition of lack of salinity and in the condition of salinity stress, the use of silica fertilizer is suggested in comparison with its non-use in order to improve the measured traits.

Keywords

Main Subjects

Ahmed, M, Hassen, F., & Khurshid, Y. (2011). Does silica and irrigation have impact on drought tolerance mechanism of sorghum? Agriculture Water Management, 98(12), 1808-1812. https://doi.org/10.1016/j.agwat.2011.07.003
Al-Taey, D. K. A., Kamaluddin, Z. N. A., & Al-Kazemy, H. H. S. (2022). Impact of Zytonic- M and organic fertilizer on growth and yield of hybrid tomato Awahr (F1) under saline conditions. International Journal of Vegetable Science, 28(4), 1-6. https://doi.org/10.1080/19315260.2022.2070569
AL-Taey, D. K. A., AL-Azawi, S. S. M., AL-Shareefi, M. J. H., & AL-Tawaha, A. R. (2018). Effect of saline water, NPK and organic fertilizers on soil properties and   growth, antioxidant enzymes in leaves and yield of lettuce (Lactuca sativa var. Parris Island). Research of Crops, 19(3), 441-449. http://dx.doi.org/10.31830/2348-7542.2018.0001.14
Ashraf, M., & Harris, P. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16. https://doi.org/10.1016/j.plantsci.2003.10.024
Arouiee, H., Naseri, M., Nemati, S., & Kafi, M. (2014). The effect of silica in reducing the effects of salinity stress in fenugreek plant (Trigonella foenum- graecum L.). Journal of Agriculture (Research and Development), 27(104), 165-172. https://aj.areeo.ac.ir/article_101835.html
Bates, L. S., Waldern, R. P., & Teare, L. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205–207.     https://link.springer.com/article/10.1007/BF00018060
Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://pubmed.ncbi.nlm.nih.gov/942051/
Chen, W., Yao, X., Cai, K., & Chen, J. (2011). Silica alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 142(1), 67-76. https://doi.org/10.1007/s12011-010-8742-x
Danaei, E., & Abdoosi, V. (2021). Effect of silica and nano- silica on some morpho-physiological and phytochemical properties of peppermint (Mentha piperita L.) under salinity stress. Iranian Journal of Medicinal and Aromatic Plants Research, 37(1), 98-112. https://dx.doi.org/10.22092/ijmapr.2021.343340.2810
Dayanti- Tilki, Gh., Keshavarz, A., Amiri, B., & Sadati, E. (2017). Effect of different   salinity    levels on stomatal changes of pasture species of Hedysarum coronarium L. and Hedysarum criniferum Boiss. Journal of Range and Watershed Management, 70(1), 101-110. https://www.sid.ir/paper/162739/fa
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
Enteshari, SH., Alishavandi, R., & Delavar, K. (2011). Interactive effects of silica and NaCl on some physiological and biochemical traits in Borago officinalis. Iranian Journal of Plant Physiology, 2(1), 315-320. https://journals.iau.ir/article_540718_38c20a21cba11f7f44c7effe8cef0f63.pdf
Ghanbari, A., Heidari, M., Fakhireh, A., & Sarani, S. H. (2006). Salt tolerance of four Atriplex species in ecological conditions of Zahedan. Genetic Research and Breeding of Rangeland and Forest Plants in Iran, 14(4), 241-250. (In Persian). https://dx.doi.org/10.22092/ijrfpbgr.2006.115057
Haghighi, M., & Pessarakli, M. (2013). Influence of silica and nano-silica on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161, 111-117.  http://dx.doi.org/10.1016/j.scienta.2013.06.034
Hajiboland, R., & Cheraghvareh, L. (2014). Influence of Si supplementation on growth and some physiological and biochemical traits in salt-stressed tobacco (Nicotiana rustica L.) plants. Journal of Sciences, 25(3), 205-217. https://jsciences.ut.ac.ir/article_51849.html
Hajiboland, R., Cherghvareh, L., & Dashtebani, F. (2017). Effects of silicon supplementation on wheat plants under salt stress. Journal of Plant Process and Function, 5(18), 1- 12.
Hajihashemi, SH.,  Jahantigh, A.,  & Fani, I. (2022). The effect of silicon treatment on improving the physiological response of radish (Raphanus sativus L.) to salinity stress. Journal of Plant Process and Function, 11(47), 21-36. http://jispp.iut.ac.ir/article-1-1523-en.html
Hassan, A., Sobhy, M.H., Kawkab, A., Azza, A., Zeinab, R., & Wedad, H. (2014). Chemical and remedial effects of purslane (Portulaca oleracea) plant. Life Sciences Journals, 11(6), 31-42. https://www.researchgate.net/publication/261099037
Hollosy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33(2), 179-197. https://doi.org/10.1016/s0968-4328(01)00011-7
Kalaji, H.M., Govindjee, B.,  Bosac, K., Koscielniakd, J., & Zuk-Gołaszewskae, K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73(1), 64–72. https://doi.org/10.1016/j.envexpbot.2010.10.009
Kataria, S., Jajoo, A., & Guruprasad, K. N. (2014). Impact of increasing ultraviolet-B (UV-B) radiation on photosynthetic processes. Journal of Photochemistry and Photobiology B, 137, 55-66. https://doi.org/10.1016/j.jphotobiol.2014.02.004
Lee, S. K., Yoon, J. Y., Sohn, E. Y., Lee, I. J., & Hamayun, M. (2010). Effect of silica on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems, 80(3), 333-340. https://link.springer.com/article/10.1007/s10457-010-9299-6
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determination of total carotenoids and chlorophyll a and b of leaf extract in different solvents. Biochemical Society Transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591
Ma, J. F., & Yamaji, N. (2008). Functions and transport of silica in plants. Cellular and Molecular Life Science, 65(19), 3049–3057. https://doi.org/10.1007/s00018-008-7580-x
Mane, A. V., Karadge, B. A., & Samant, J. S. (2010). Salinity induced changes in photosynthetic pigments and polyphenols of Cymbopogon nardus (L.) Rendle. Journal of Chemical and Pharmaceutical Research, 2(3), 338-347. https://www.researchgate.net/publication/275033297
Memarpour, M., & Hadi, M. R. (2012, February). Effect of nitric oxide on drought tolerance in   potato cultivars Paper. 1th National Conference on Sustainable Agricultural Development and Healthy Environment. Hamedan, Iran (pp. 457-461). https://civilica.com/doc/191008
Moharekar, S. T., Lokhande, S. D., Hara, T., Tanaka, R., & Tanaka, A. (2003). Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. Photosynthetica, 41(2), 315-317. https://link.springer.com/article/10.1023/B:PHOT.0000011970.62172.15
Mpoloka, S. W. (2008). Effects of prolonged UV-B exposure in plants. African Journal of Biotechnology, 7(25), 4874-4883.
Muhammad, Z., & Hussain, F. (2010). Vegetative growth performance of five medicinal plants under NaCl salt stress. Pakistan Journal of Botany, 42(1), 303-316. https://www.researchgate.net/publication/236608707
Omrani, B., & Moharramnejad, S. (2018). Study of salinity tolerance in four maize (Zea mays L.) hybrids at seedling stage. Journal of Crop Breeding, 9(24), 79-86 (In Persian). http://jcb.sanru.ac.ir/article-1-938-fa.html
Pazoki, A. R., Rezaiee, H., & Niki, E. (2012, July). The effect of salinity and ascorbic acid stress on chlorophyll a, b and a+b content in Portulaca oleracea L. 2th National Conference on Biodiversity and Its Impact on Agriculture and Environment. Urmia, Iran (pp. 1301-1305).  
Rahdari, P., Tavakoli, S., & Hosseini, S. M. (2012). Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulaca oleracea L.) leaves. Journal of Stress Physiology and Biochemistry, 8(1), 182-193. https://www.researchgate.net/publication/22845
Setia, R., Gottschalk, P., Smith, P., Marschner, P., Baldock, J., Setia, D., & Smith, J. (2013). Soil salinity decreases global soil organic carbon stocks. Science of the Total Environment, 465, 267-272. https://doi.org/10.1016/j.scitotenv.2012.08.028
Shams, H., Abdolzadeh, A., Sadeghipour, H. R., Mehreban-Goveini, P., & Bagherieh-Najjar, M. B. (2019). Effects of silica nutrition on reduction of salinity-induced oxidative stress in Arabidopsis Thaliana. Journal of Plant Research, 32(1), 111-124. (In Persian).          
Simioni, C., Schmidt, E., Felix, M., Polo, L., Rover, T., Kreusch, M., Pereira, D., Chow, F., Ramlov, F., Maraschin, M., & Bouzon, Z. (2014). Effects of ultraviolet radiation (UVA+ UVB) on young gametophytes of G elidium floridanum: Growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure. Photochemistry and Photobiology, 90(5), 1050-1060. https://doi.org/10.1111/php.12296
Smrkolj, P., Stibilj, V., Kreft, I., & Germ, M. (2006). Selenium species in buckwheat cultivated with foliar addition of Se (VI) and various levels of UV-B radiation. Food Chemistry, 96(4), 675-681.  https://doi.org/10.1016/j.foodchem.2005.05.002
Song, J., Fan, H., Zhao, Y., Jia, Y., Du, X., & Wang, B. (2008). Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an inter-tidal zone and on saline inland. Aquatic Botany, 88(4), 331–337. https://doi.org/10.1016/j.aquabot.2007.11.004
Xu, X., Yu, L., & Chen, G. (2006). Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electro chemical detection. Journal of Pharmaceutical and Biomedical Analysis, 41(2), 493-499. https://doi.org/10.1016/j.jpba.2006.01.013
Yaryura, P., Cordon, G., Leon, M., Kerber, N., Pucheu, N., Rubio, N., Garc, G., & Lagorio, G. (2009). Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of cotyledons of oilseed rape (Brassica napus L.). Journal of Agronomy and Crop Science, 195(3), 186-196. https://doi.org/10.1111/j.1439-037X.2008.00359.x
 Yong, S., Ki-Seung, K., Muhammad, H., & Yoonha, K. (2020). Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Journal of Plant Abiotic Stress, 10, 1725. https://doi.org/10.3389/fpls.2019.01725