Document Type : Original Article

Authors

1 Department of Agroforestry, Assane Seck University of Ziguinchor, Senegal

2 Analytical and Trial Laboratory, Polytechnic University Cheikh Anta Diop of Dakar, Senegal

Abstract

Purpose: Cucumbers play an immediate and crucial role in fighting against micronutrient deficiency and are often consumed crudely. This study aimed to assess the nutritional and phytochemical values of these three whole fruits of cucumber and the share of their different parts such as the epicarp, the mesocarp, and the endocarp. Research method: Fresh cucumber fruits were collected and their different parts were separated and crushed. Samples were analyzed to determine the proximate, the phytochemicals, the vitamins, and the minerals. Findings: The results show significant variation in nutritional and phytochemical content. White Cucumis sativus contained more sugars (704.57±124.79 mg/100g), total polyphenols (133.05±21.26 mg/100g), flavonoids (1.07±0.46 mg/100g), tannins (43.26±5.18 mg/100g), Sodium (28.52±1.37 mg/100g) and Potassium (286.58±25.40 mg/100g). Green C. sativus concentrated more protein (35.65±5.12 mg/100g) and Iron (4.22±5.44 mg/100g) while, non-bitter wild C. metuliferus was richer in acidity (6.5±1.45 meq/100g), vitamin C (275.07±44.23), Magnesium (47.87±10.53 mg/100g) and Calcium (21.25±25.40 mg/100g). According to the different parts, the endocarp concentrates more acidity (7.25±2.21 meq/100g), proteins (39.76±5.07 mg/100g), nitrogen (6.36±0.81 mg/100g), total polyphenol (104.12±28.67 mg/100g) and flavonoids (1.10±0.45 mg/100g). The Mesocarp has more sugars (663.50±12.10 mg/100g) while Epicarp concentrates more Tannin (40.19±1.99 mg/100g), Magnesium (56.51±2.94 mg/100g), Calcium (28.21±20.72 mg/100g), Sodium (25.05±5.28 mg/100g), Potassium (312.66±13.84 mg/100g) and Iron (4.79±4.98 mg/100g). Cucumbers are recognized as fruits and vegetables with multiple nutritional values. Research limitations:  Further genotypic characterizations were required for a better understanding of the difference between cucumbers. Originality/Value: The knowledge of the nutritional value of each part of the fruit was necessary for better valorization and maximizing the nutrient supplies.

Keywords

Main Subjects

Abulude, F. O., Akinjagunla, Y. S., Abe, T., Awanlemhen, B. E., & Afolabi, O. (2007). Proximate composition, selected mineral, physical characteristics, and in vitro multienzyme digestibility of cucumber (Cucumis sativus) fruit from Nigeria. American Journal of Food Technology2(3), 196-201. https://doi.org/10.3923/ajft.2007.196.201.
Agatemor, U. M. M., Nwodo, O. F. C., & Anosike, C. A. (2018). Phytochemical and proximate composition of cucumber (Cucumis sativus) fruit from Nsukka, Nigeria. African Journal of Biotechnology17(38), 1215-1219. https://doi.org/10.5897/AJB2018.16410
Aliero, A. A., & Gumi, A. M. (2012). Studies on the germination, chemical composition, and antimicrobial properties of Cucumis metuliferus. Annals of Biological Research3(8), 4059-4064.
Benzioni, A., Mendlinger, A., Ventura, M., & Huyskens, S. (1993). Germination, fruit development, yield, and post-harvest characteristic of Cucumis metuliferus. New York: New Crops Wiley, 553-557.
Burkill, H.M. (1985). Useful Plants of West Tropical Africa. Vol.1, 2nd ed. Royal Botanic Gardens, London, 570-605.
Deguine JP, Atiama-Nurbel T, Aubertot JN, Augusseau X, Atiama M, Jacquot M, Reynaud B. (2015) Agro-ecological management of cucurbit-infesting fruit fly: a review. Agronomy for Sustainable Development, 35(3), 937–965. https://doi.org/10.1007/s13593-015-0290-5
Diop, A., Sarr, S. O., Sall, A. B., Niass, O., Ndiaye, B., & Diop, Y. M. (2020). Nutritional and antioxidant potential of seeds from two Cucurbitaceae species from Senegal. European Journal of Chemistry11(4), 364-369. https://doi.org/10.5155/eurjchem.11.4.364-369.2046
Dixit, Y. and Kar, A. (2010). Protective role of three vegetable peels in alloxan-induced diabetes mellitus in male mice. Plant Foods for Human Nutrition, 65, 284-289. https://doi.org/10.1007/s11130-010-0175-3
Ferrara L. (2006) The dietary importance of tropical fruit: the kiwano. Ingredienti Alimentari, 5, 14–17.
Georgé, S., Brat, P., Alter, P., & Amiot, M. J. (2005). Rapid determination of polyphenols and vitamin C in plant-derived products. Journal of Agricultural and Food Chemistry53(5), 1370-1373. https://doi.org/10.1021/jf048396b
Gotep, J. (2011). Glycosides fraction extracted from the fruit pulp of Cucumis metuliferus E. Meyer has an antihyperglycemic effect in rats with alloxan-induced diabetes. Journal of Natural Pharmaceuticals, 2, 48-51.
Hughes, J. D. A., & Keatinge, J. D. H. (2012). The nourished millennium: how vegetables put global goals for healthy, balanced diets within reach. High-Value Vegetables in Southeast Asia: Production, Supply, and Demand, 11-26.
Hussein, A. H. A. (2009). Impact of sewage sludge as organic manure on some soil properties, growth, yield, and nutrient contents of cucumber crop. Journal of Applied Sciences9(8), 1401-1411. https://doi.org/10.3923/jas.2009.1401.1411.
Jimam, N. S., Wannang, N. N., Anuka, J. A., Omale, S., Falang, K. D., & Adolong, A. A. (2011). Histopathologic effect of C. Metuliferus E Mey (CUCURBITACEAE) fruits in albino rats. International Journal of Pharmaceutical Sciences and Research, 2(8), 2190-2194. http://doi.org/10.13040/IJPSR.0975-8232.2(8).2190-94
Joslyn, M. A. (1970) Ash Content and Ashing Procedures. Methods in Food Analysis. Physical, Chemical, and Instrumental Methods of Analysis. Second Edition, Academic Press, New York: 109-140.
Kapoor, L. D., (2001). Handbook of ayurvedic medicinal plants. CRC Press.
Kim, D. O., Chun, O. K., Kim, Y. J., Moon, H. Y., & Lee, C. Y. (2003). Quantification of polyphenolics and their antioxidant capacity in fresh plums. Journal of Agricultural and Food Chemistry51(22), 6509-6515. https://doi.org/10.1021/jf0343074
Kirk, P. L. (1950). Kjeldahl method for total nitrogen. Analytical Chemistry22(2), 354-358. https://doi.org/10.1021/ac60038a038
Marrubini, G., Papetti, A., Genorini, E., & Ulrici, A. (2017). Determination of the sugar content in commercial plant milk by near-infrared spectroscopy and Luff-Schoorl total glucose titration. Food Analytical Methods10(5), 1556-1567.
Meléndez-Martínez, A. J., Mandić, A. I., Bantis, F., Böhm, V., Borge, G. I. A., Brnčić, M., ... & O’Brien, N. (2022). A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents, and research needs. Critical Reviews in Food Science and Nutrition62(8), 1999-2049. https://doi.org/10.1080/10408398.2020.1867959
Mukherjee, P. K., Nema, N. K., Maity, N., & Sarkar, B. K. (2013). Phytochemical and therapeutic potential of cucumber. Fitoterapia84, 227-236. https://doi.org/10.1016/j.fitote.2012.10.003
Nielsen, S. S., & Nielsen, S. S. (2017). Vitamin C determination by indophenol method. Food analysis Laboratory Manual, 143-146. https://doi.or/10.1007/978-3-319-44127-6_15
Prior, R. L., & Cao, G. (2000). Antioxidant phytochemicals in fruits and vegetables: diet and health implications. HortScience35(4), 588-592. https://doi.org/10.21273/HORTSCI.35.4.588
Romero-Rodriguez, M. A., Vazquez-Oderiz, M. L., Lopez-Hernandez, J., & Simal-Lozano, J. (1992). Physical and analytical characteristics of the kiwano. Journal of Food Composition and Analysis5(4), 319-322. https://doi.org/1016/0889-1575(92)90065-r
Sáez-Plaza, P., Michałowski, T., Navas, M. J., Asuero, A. G., & Wybraniec, S. (2013). An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, the chemistry of the procedure, and titrimetric finish. Critical Reviews in Analytical Chemistry43(4), 178-223. https://doi.org/10.1080/10408347.2012.751786
Sheela, K., Nath, K. G., Vijayalakshmi, D., Yankanchi, G. M., & Patil, R. B. (2004). Proximate composition of underutilized green leafy vegetables in Southern Karnataka. Journal of Human Ecology15(3), 227-229. https://doi.org/10.1080/09709274.2004.11905698
Šeregelj, V., Pezo, L., Šovljanski, O., Lević, S., Nedović, V., Markov, S., ... & Ćetković, G. (2021). A new concept of fortified yogurt formulation with encapsulated carrot waste extract. LWT138, 110732. https://doi.org/10.1016/j.lwt.2020.110732
Team RC (2015) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at http.www.R-project.org
Vilas-Boas, A. A., Pintado, M., & Oliveira, A. L. (2021). Natural bioactive compounds from food waste: Toxicity and safety concerns. Foods10(7), 1564. https://doi.org/10.3390/foods10071564
USDA (2015) The plants' database. United States Department of Agriculture – Natural
Resources Conservations Service. http://plants.usda.gov. Accessed 28 January 2023
Usman, J. G., Sodipo, O. A., Kwaghe, A. V., & Sandabe, U. K. (2015). Uses of Cucumis metuliferus: a review. Cancer Biology5(1), 24-34.
Usman, J. G., Sodipo, O. A., & Sandabe, U. K. (2014). Phytochemical screening and acute toxicity study of Cucumis metuliferus E. Mey. Ex. Naudin fruit extract in cockerels. International Journal of Phytomedicine6(2), 243-247.
Uthpala, T. G. G., Marapana, R. A. U. J., Lakmini, K., & Wettimuny, D. C. (2020). Nutritional bioactive compounds and health benefits of fresh and processed cucumber (Cucumis sativus L.). Sumerianz Journal of Biotechnology3(9), 75-82.
Uthpala, T. G. G., Marapana, R. A. U. J., and Jayawardana, S. A. S., (2018). Sensory quality and physicochemical evaluation of two brine pickled cucumber (Cucumis sativus L.) varieties. International Journal of Advanced Engineering Research and Science, 5, 22-26. https://doi.org/10.22161/ijaers.5.3.4
Vieira, E. F., Grosso, C., Rodrigues, F., Moreira, M. M., Fernandes, V. C., & Delerue-Matos, C. (2020). Bioactive Compounds of Horned Melon (Cucumis metuliferus E. Meyer ex Naudin). Bioactive Compounds in Underutilized Vegetables and Legumes, 1-21. https://doi.org/10.1007/978-3-030-44578-2_21-11
Wang, Y. H., Joobeur, T., Dean, R. A., & Staub, J. E. (2007). Cucurbits-genome mapping and molecular breeding in plants 5. Nature Genetics41, 1275-1281.
Wannang, N. (2011). Aqueous fruit extract of Cucumis metuliferus E Mey. Ex Naud (Cucurbitaceae) alters behavioural activities in chicks. Production Agriculture and Technology, 7(1), 84-89.
Wargovich, M.J. (2000). Anticancer properties of fruits and vegetables. HortScience, 35, 573-575. https://doi.org/10.21273/HORTSCI.35.4.573