Document Type : Original Article

Authors

1 Department of Medicinal Plants, Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Kerman, Iran.

2 Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.

3 Department of Horticultural Science and Landscape Design, Shirvan Faculty of Agriculture, University of Bojnord, Bojnord, Iran

Abstract

Purpose: Ferula assafoetida (L.) is one of the most important medicinal plants with many applications in food, pharmaceutical and cosmetic industries.  It has been endangered due to overharvesting from natural habitat and long period of seed dormancy. Knowledge of seed germination behavior leads to the development of its conservation and cultivation. Research methods: We conducted this research as a factorial experiment in Completely Randomized Design (CRD) to evaluate seed germination in response to low temperature, plant growth regulators (kinetin, gibberellin, carrageenan as plant bio-stimulant) and TiO2 nanoparticles (TiO2 NPs). The germination percentage and rate, mean germination time, and radicle elongation were measured. Findings: The results showed that the cold (4 °C), GA3, carrageenan, kinetin and TiO2 NPs increased seeds germination rate and percentage. Maximum seed germination percentage (86% or 23% more than control) and minimum mean germination time (26 days or 12.6 days shorter than control) obtained with seeds pretreated by kinetin soaking and TiO2 NPs treatment at 4 °C. Furthermore, most treatments produced healthier and stronger radicles compared to the control which is vital for better establishment and growth. Research limitations: No limitations were found. Originality/Value: The price and demand of asafoetida products have been increased dramatically. The most important constrain to hinder reliable supply of the products is the shortage of plant or difficulty to access its products. Here, we showed the cost effective and environmentally friendly methods to provide high seeds germination with vigorous roots.

Keywords

Main Subjects

Abd El-Razek, M. H., Ohta, S., Ahmed, A. A., & Hirata, T. (2001). Sesquiterpene coumarins from the roots of Ferula assa-foetida. Phytochemistry, 58, 1289-1295. https://doi.org/10.1016/S0031-9422(01)00324-7.
Ahmadi Mousavi, E., Nasibi, F., Manouchehri Kalantari, K., & Oloumi H. (2017). Stimulation effect of carrageenan on enzymatic defense system of sweet basil against Cuscuta campestris infection, Journal of Plant Interactions, 12, 286-294. https://doi.org/10.1080/17429145.2017.1341560.
Ahmadi Mousavi, E., Manouchehri Kalantari, K., Nasibi, F., & Oloumi, H. (2018). Effects of carrageenan as elicitor to stimulate defense responses of basil against Cuscuta campestris Yunck. Acta Botanica Croatia, 1, 62- 69. https://doi.org/10.2478/botcro-2018-0005.
Amalraj, A., & Gopi, S. (2016). Biological activities and medicinal properties of Asafoetida: A review. Journal of Traditional and Complementary Medicine, 7(3), 347-359. http://doi.org/10.1016/j.jtcme.2016.11.004.
Atia, A., Debez, A., Barhoumi, Z., Smaoui, A., & Abdelly, C. (2009). ABA, GA3, and nitrate may control seed germination of Crithmum maritimum Apiaceae under saline conditions. Comptes Rendus Biologies, 332, 704-710. https://doi.org/10.1016/j.crvi.2009.03.009.
Baskin, C., & Baskin, J. (1998). Seed ecology, biogeography and evolution of dormancy and germination. New York: Academic Press.
Castiglione, M. R., Giorgetti, L., Geri, C., & Cremonini, R. (2011). The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L.  Journal of Nanoparticle Research, 13, 2443-2449. https://doi.org/10.1007/s11051-010-0135-8.  
Chen, S. Y., Chou, S. H., Tsai, C. C., Hsu, W. Y., Baskin, C. C., Baskin, J. M., Chien, C. T., & Kuo-Huang, L. L. (2015). Effects of moist cold stratification on germination, plant growth regulators, metabolites and embryo ultrastructure in seeds of Acer morrisonense (Sapindaceae), Plant Physiology and Biochemistry, 94, 165-173. https://doi.org/10.1016/j.plaphy.2015.06.004.
Ellis,  R. A., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9, 373-409.
Gao, F., Hong, F., Liu, C., Zheng, L., Su, M., Wu, X., Yang, F., Wu, C., & Yang, P. (2006). Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biological Trace Element Research, 111, 239-253. https://doi.org/10.1385/BTER:111:1:239.
Gonzàlez, A., Castro, J., & Vera, J. (2013). Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell divition. Journal of Plant Growth Regulation, 32, 443-448. https://doi.org/10.1007/s00344-012-9309-1.
Hassani, S. B., Saboora, A., Radjabian, T., & Fallah Husseini, H. (2010). Effects of Temperature, GA3 and cytokinins on breaking seed dormancy of Ferula assa-foetida L.  Iranian Journal of Science and Technology, 33, 75-85.
Hermann, K., Meinhard, J., Dobrev, P., Linkies, A., Pesek, B., Heb, B., Machackova, I., Fischer, U., & Leubner-Metzger, G. (2007). 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.) - A comparative study of fruits and seeds. Journal of Experimental Botany, 58, 3047–3060. https://doi.org/10.1093/jxb/erm162.
Heyl, A., Riefler, M., Romanov, G., & Schmulling, T. (2012). Properties, functions and evolution of cytokinin receptors. European Journal of Cell Biology, 91, 246–256. https://doi.org/10.1016/j.ejcb.2011.02.009.
Hooley R. (1994). Gibberellins: perception, transduction and responses. Plant Molecular Biology, 26, 1529-1555. https://doi.org/10.1007/BF00016489.
Hu, X. K., Jiang, X. L., Hwang, H. M., Liu, S. L., & Guan, H. S. (2004). Promotive effects of alginate-derived oligosaccharide on maize seed germination. Journal of Applied Phycology, 16, 73-76.
Kabar, K. (1998). Comparative effects of kinetin, benzyladenine, and gibberellic acid on abscisic acid inhibited seed germination and seedling growth of Red Pine and Arbor Vitae. Turkish Journal of Botany, 22, 1-6. https://journals.tubitak.gov.tr/botany/vol22/iss1/1.
Kavandi, A., Ashraf Jafari, A., & Jafarzadeh, M. (2018). Effect of seed priming on enhancement of seed germination and seedling growth of annual sainfoin (Onobrychis crista-galli (L.) Lam.) in medium and long-term collections of gene bank. Journal of Rangeland Science, 2, 117-128. https://doi.org/10.22092/ijrdr.2018.117817.
Koirala, N., Barker, D., Helfer, C. A., Phippen, W. B., Heller, N., Hard, A. W., Wells, S., & Lindsey, A. J. (2022). A process to enhance germination of a wild pennycress variety. Seed Science and Technology, 50(2), 195-205. https://doi.org/10.15258/sst.2022.50.2.03.
Lu, C. M., Zhang, C. Y., Wen, J. Q., & Tao, M. X. (2002). Research of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168-172.
Majumdar, A., & Kar, R. K. (2021). Seed Germination: Explicit Crosstalk Between Hormones and ROS. In Hormones and Plant Response (Gupta, D.K., Corpas, F.J. (eds).). Plant in Challenging Environments, vol 2. Springer, Switzerland, 67-90. https://doi.org/10.1007/978-3-030-77477-6-3.
Malek, M., Hassani, F., Rezvani, E., Mahmoodi, V., & Khosravi, M. (2022). Optimal conditions determination for standard germination test of asafoetida (Ferula assa-foetida) seeds. Iranian Journal of Seed Science and Technology. 11(5), 1-18. https://doi.org/10.22092/ijsst.2022.359018.1438.
Mollaei, S., Farahmand, H., & Tavassolian, I. (2018). The effects of 24-epibrassinolide corm priming and foliar spray on morphological, biochemical and postharvest traits of sword lily. Horticulture, Environment, and Biotechnology, 59(3), 325-333. https://doi.org/10.1007/s13580-018-0033-z.
Nadjafi, F., Bannayan, M., Tabrizi, L., & Rastgoo, M. (2006). Seed germination and dormancy breaking techniques for Ferula gummosa and Teucrium polium. Journal of Arid Environments, 64, 542-547. https://doi.org/10.1016/j.jaridenv.2005.06.009.
Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372-386. https://doi.org/10.1007/s10646-008-0214-0.
Norastehnia, A., Sajedi, R., & Nojavan-Asghari, M. (2007). Inhibitory effects of methyl jasmonate on seed germination in maize (Zea mays): Effect on α-amylase activity and ethylene production. General and Applied. Plant Physiology, 33, 13-23.
Pipinis, E., Milios, E., Kiamos, N., Mavrokordopoulou, O., & Smiris, P. (2012). Effects of stratification and pre-treatment with gibberellic acid on seed germination of two Carpinus Species. Seed Science and Technology, 40, 21-31. https://doi.org/10.15258/sst.2012.40.1.03.
Riefler, M., Novak, O., Strnad, M., & Schmulling, T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 18, 40–54. https://doi.org/10.1105/tpc.105.037796
Sadraei, H., Ghannadi, A., & Malekshahi, K. (2003). Composition of the essential oil of Ferula assafoetida and its spasmolytic action. Saudi Pharmaceutical Journal, 11, 136-140.
Santner, A., Calderon-Villalobos, L., & Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology, 5, 301-307. https://doi.org/10.1038/nchembio.165.
Sharifi, H., Nemati, A., & Gerdakaneh, M. (2017). Breaking seed dormancy and improve germination of four medicinal species of Apiaceae under gibberellic acid and prechilling treatments. Iranian Journal of Seed Science and Research, 4(3), 27-38. https://doi.org/10.22124/jms.2017.2505.
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant Physiology. Massachusetts U.S.A.: Sinauer Associates.
Vera, J., Castro, J., Contreras, R. A., González, A., & Moenne, A. (2012). Oligo-carrageenans induce a long-term and broad-range protection against pathogens in tobacco plants (var. Xanthi). Physiological and Molecular Plant Pathology, 79, 31-39. https://doi.org/10.1016/j.pmpp.2012.03.005.
Voegele, A., Linkies, A., Muller, K.,  & Leubner-Metzger, G. (2011). Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. Journal of Experimental Botany, 155, 1851–1870.  https://doi.org/10.1093/jxb/err214.
Yamaguchi, S. (2008). Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 59, 225-251. https://doi.org/10.1146/annurev.arplant.59.032607.092804.
Yang, Q. H., Ye, W. H., & Yin, X. J. (2007). Dormancy and germination of Areca triandra seeds. Scientia Horticulturae, 113, 107-111. https://doi.org/10.1016/j.scienta.2007.01.028.
Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach, Biological Trace Elements Research, 105, 83-91. https://doi.org/10.1385/BTER:104:1:083.