Document Type : Original Article

Authors

1 University of Kairouan, Faculty of Science and Technology of Sidi Bouzid, 9100 Sidi Bouzid, Tunisia

2 Regional Center of Agricultural Research of Sidi Bouzid (CRRA) PB 357, 9100 Sidi Bouzid, Tunisia

Abstract

Purpose: Water irrigation regimes strongly influence the agrophysiological parameters in pistachio. This study aims to investigate the impact of the partial root drying on the yield, vegetative growth, physiological parameters, water status and biochemical traits of the pistachio cv. Mateur budded on P. atlantica rootstocks during the growing season (2021). Research Method: The agro-physiological responses of the pistachio trees located in the experimental orchard of the Regional Center of Agriculture Research (CRRA, Sidi Bouzid, Tunisia), were studied. Three water treatments were applied; T0: 100% Partial root drying (PRD) during all the season, T1; 75% PRD during all the season and T2; 50% PRD during all the growing season. The leaf gas exchange parameters were determined using a portable photosynthesis system (CI-340 handheld photosynthesis system, USA). Findings: Results showed the stomatal conductance (gS) of pistachio leaves ranged from 320 to 760 mmol H2O m-2s-1 in the 100% PRD treatment whereas the water regimes 75% PRD and 50% PRD presented a clear decrease in this parameter. The proline and the soluble sugar content reached its maximum value (2.10 μmol g−1 FW and 275.60 μg g−1 FW, respectively) under the 50 % PRD treatment during the month of August. Research limitations: No limitations were found. Originality/Value: The 75% PRD treatment was the most efficient as it did not show significant differences with the 100% PRD treatment while 25% of the irrigation water was saved. The partial root drying strategy can be used in pistachio orchards under semi-arid conditions.

Keywords

Main Subjects

Abboud, S., Dbara, S., Abidi, W., & Braham, M. (2019). Differential agro-physiological responses induced by partial root-zone drying irrigation in olive cultivars grown in semi-arid conditions. Environmental and Experimental Botany, 167, 103863. https://doi.org/10.1016/j.envexpbot.2019.103863
Abboud, S., Vives-Peris, V., Dbara, S., Gomez-Cadenas, A., Perez-Clemente, RM.., Abidi, W., & Braham, M. (2021). Water status, biochemical and hormonal changes involved in the response of Olea europaea L. to water deficit induced by partial root-zone drying irrigation (PRD). Scientia Horticulturae, 276, 109737. https://doi.org/10.1016/j.scienta.2020.109737
Abidi, W., Akrimi, R., Hajlaoui, H., Rejeb, H., & Gogorcena, Y. (2023). Foliar Fertilization of Potassium Silicon Improved Postharvest Fruit Quality of Peach and Nectarine [Prunus persica (L.) Batsch] Cultivars.  Agriculture, 13, 195. https:// doi.org/10.3390/agriculture13010195
Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. Irrigation and Drain, Paper N° 56. FAO, Rome, Italy, pp, 300.
Angelopoulos, K., Dichio, B., & Xiloyannis, C. (1996). Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. Journal of Experimental Botany, 47(8), 1093–1100. https://doi.org/10.1093/jxb/47.8.1093
Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026–2032. https://doi.org/10.5897/AJAR10.027
Baccari, S., Elloumi, O., Chaari-Rkhis, A., Fenollosa, E., Morales, M., Drira, N., Ben Abdallah, F., Fki, L. & Munné-Bosch, S. (2020). Linking leaf later potential, photosynthesis and chlorophyll loss with mechanisms of photo and antioxidant protection in juvenile olive trees subjected to severe drought. Frontiers in Plant Science, 11, 614144. https://doi.org/10.3389/fpls.2020.614144
Behboudian, M.H., Walker, R.R., & Törökfalvy, E. (1986). Effects of water stress and salinity on photosynthesis of pistachio. Scientia Horticulturae, 29 (3), 251–261. https://doi.org/10.1016/0304-4238(86)90068-3
Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhris, M., & Ben Abdallah, F. (2009). Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany, 67(2), 345–352.      https://doi.org/10.1016/J.ENVEXPBOT.2009.07.006
Cameron, R.W.F., Harrison-Murray, R.S., &Scott, M.A. (1999). The use of controlled water stress to manipulate growth of container grown Rhododendron cv. Hoppy. Journal of Horticultural Science and Biotechnology, 74, 161–169.
Centritto, M., Wahbi, S., Serraj, R., & Chaves, M.M. (2005). Effects of partial root zone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate. II. Photosynthetic responses. Agriculture, Ecosystem & Environment, 106, 303–311. https://doi.org/10.1016/j.agee.2004.10.016
Dbara, S., Haworth, M., Emiliani, G., Mimoun, M.B., Gomez-Cadenas, A., & Centritto, M. (2016). Partial root-zone drying of olive (Olea europaea var. Chetoui) induces reduced yield under field conditions. PLoS One, 11, 1–20. https://doi.org/10.1371/journal.pone.0157089
Dry, P.R., Loveys, B.R., Botting, D.G., & Düring, H. (1996). Effects of partial root-zone drying on grapevine vigour, yield, composition of fruit and use of water. In: “Proceedings of the 9th Australian Wine Industry Technical Conference” pp. 128–131.
Dutra, W.F., de Melo, A.S., & Suassuna, J.F. (2017). Antioxidative responses of cowpea cultivars to water deficit and salicylic acid treatment. Agronomy Journal, 109, 895–905. https://doi.org/10.2134/ agronj2015.0519
Egea, G., Nortes, P.A., González, R.M.M., Baille, A. & Domingo, R. (2010). Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes. Agricultural Water Management, 97(1), 171-181. https://doi.org/10.1016/j.agwat.2009.09.006
Escobar-Gutiérrez, A.J., Zipperlin, B., Carbonne, F., Moing, A., & Gaudillère, J.P. (1998). Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Australian Journal of Plant Physiology, 25, 197-205.
FAOSTAT. (2023). Statistical Databases. http://faostat.fao.org
Fereres, E., & Goldhamer, D.A. (Eds.). (1990). Deciduous fruit and nut trees. In: Stewart, B.A., Nielsen, D.R., Irrigation of Agricultural Crops (ASA monograph no. 30). American Society of Agronomy, Madison, WI, pp. 987–1017.
Fereres, E., & Soriano, M.A., (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147–159. https://doi.org/10.1093/jxb/erl165
Fereres, E., Goldhamer, D.A., & Sadras, V.O. (Eds). (2012). Yield responses to water of fruit trees and vines. In: Crop yield response to water; Steduto P, Hsiao TC, Fereres E, Raes D. pp. 246-497, FAO, Rome.
Galindo, A., Calín-Sánchez, A., Rodríguez, P., Cruz, Z.N., Girón, I.F., Corell, M., Martínez-Font, R., Moriana, A., Carbonell-Barrachina, A.A., Torrecillas, A., & Hernández, F. (2017). Water stress at the end of pomegranate fruit ripening produces earlier harvesting and improves fruit quality. Scientia Horticulturae226, 68-74. https://doi.org/10.1016/j.scienta.2017.08.029
Germana, C. (1997). The response of pistachio trees to water stress as affected by two different rootstocks. Acta Horticulturae, 449, 513–519. https://doi.org/10.17660/ActaHortic.1997.449.71
Gijón, M.C., Gimenez, C., Perez, L.D., Guerrero, J., Couceiro, J.F., & Moriana, A. (2011). Water relations of pistachio (Pistacia vera L.) as affected by phenological stages and water regimes. Agricultural Water Management, 128(4), 415-422. https://doi.org/10.1016/j.scienta.2011.02.004
Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Glob Planet Change, 63(2–3), 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005
Goldhamer, D.A. (1995). Irrigation Management. In: Pistachio Production. Ed: L. Ferguson. Center for fruit and nut research and information, Davis, CA, pp. 71–81.
Goldhamer, D.A., & Beede, B.H. (2004). Regulated deficit irrigation effects on yield, nut quality and water-use efficiency of mature pistachio trees. Journal of Horticultural Science and Biotechnology, 79(4), 538-545. https://doi.org/10.1080/14620316.2004.11511802.
Grattan, S.R., Berenguer, M.J., Connell, J.H., Polito, V.S., & Vossen, P.M. (2006). Olive oil production as influenced by different quantities of applied water. Agriculture Water Management, 85, 133–140. https://doi.org/10.1016/j.agwat.2006.04.001
Guerrero, J., Moriana, A., Pérez, L.D., Couceiro, J.F., Olmedilla, N., &Gijón, M.C. (2006). Regulated deficit irrigation and the recovery of water relations in pistachio trees. Tree Physiology, 26(1), 87-92. https://doi.org/10.1093/treephys/26.1.87
Haghighi, S.R., Hosseininaveh, V., Maali-Amiri, R., Talebi, K., & Irani, S. (2021). Improving the drought tolerance in pistachio (Pistacia vera) seedlings by foliar application of salicylic acid. Journal of Crop Health, 73, 495–507. https://doi.org/10.1007/s10343-021-00569-z
IPGRI (1997). Descriptors for pistachio (Pistacia vera L.). International Plant Genetic Resources Institute, Rome, Italy.
Jiménez, S., Dridi, J., Gutiérrez, D., Moret, D., Irigoyen, J.J., Moreno, M.A., & Gogorcena, Y. (2013). Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiology, 33, 1061–1075. https://doi.org/10.1093/treephys/tpt074
Jovanovic, Z., & Stikic, R. (2018). Partial Root-Zone Drying Technique: from Water Saving to the Improvement of a Fruit Quality. Frontiers in Sustainable Food Systems, 1, 3. https://doi.org/10.3389/ fsufs.2017.00003.
Kanber, R., Yazar, A., Onder, S., & Koksal, H. (1993). Irrigation response of pistachio (Pistacia vera L.). Irrigation Science, 14(1), 7–14. https://doi.org/10.1007/bf00195000
Kempa, S., Krasensky, J., Dal Santo, S., Kopka, J., & Jonak, C. (2008). A central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS One, 3(12), e3935. https://doi.org/10.1371/journal.pone. 0003935.   
Memmi, H., Gijón, M.C., Couceiro, J.F., & Pérez, L.D. (2016b). Water stress thresholds for regulated deficit irrigation in pistachio trees: Rootstock influence and effects on yield quality. Agricultural Water Management, 164(1), 58-72. https://doi.org/10.1016/j.agwat.2015.08.006
Memmi, H., Gijón, M.C., Couceiro, J.F., & Pérez-López, D. (2016). Water stress thresholds for regulated deficit irrigation in pistachio trees: Rootstock influence and effects on yield quality. Agriculture Water Management, 164, 58-72. https://doi.org/10.1016/j.agwat.2015.08.006
Monastra, F., Avanzato, D., Martelli, S., & D’Ascanio, R. (1998). Irrigation of pistachio in Italy: ten years of observation. Acta Horticulturae, 470, 516-524.      https://doi.org/10.17660/ActaHortic.1998.470.73
Ranjbar, A., Imani, A., Piri, S., & Abdoosi, V. (2021). Drought effects on photosynthetic parameters, gas exchanges and water use efficiency in almond cultivars on different rootstocks. Plant Physiology Reports, 26(1), 95–108. https://doi.org/10.1007/s40502-021-00568-2
Reddy, A.R., Chaitanya, K.V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and metabolism in higher plants. Journal of Plant Physiology, 161, 1189-1202. https://doi.org/10.1016/j.jplph. 2004. 01.013.
Rieger, M. (1995). Offsetting effects of reduced root hydraulic conductivity and osmotic adjustment following drought. Tree Physiology, 15, 379-385. https://doi.org/10.1093/treephys/15.6.379.
Robyt, J.F., & White, B.J. (1987). Biochemical techniques-theory and practice. Books Cole publishing company. USA, 267-275.
Sajjadinia, A., Ershadi, A., Hokmabadi, H., khayyat, M., & Gholami, M. (2010). Gas exchange activities and relative water content at different fruit growth and developmental stages of ON and OFF cultivated pistachio trees. Australian Journal of Agricultural Engineering, 1, 1-6. https://doi.org//doi/10.3316/informit.632925749312558
Shackel, K.A., Ahmadi, H., Biasi, W., Buchner, R., Goldhammer, D., Gurusinghe, S., Hasey, J., Kester, D., Krueger, B., McGourty, G., Micke, W., Mitcham, E., Olson, B., Pelletrau, K., Phillips, H., Ramos, D., Schwankl, L., Sibbett, S., Snyder, R., Southwick, S., Stevenson, M., Thorpe, M., Weinbaum, S., & Yeager, J. (1997). Plant water status as an index of irrigation need in deciduous fruit trees. Hort Technology, 7, 23–29.
Spann, T.M., Beede, R.H., & DeJong, T.M. (2007). Preformation in vegetative buds of pistachio relationship to shoot morphology, crown structure and rootstock vigor. Tree Physiology, 27(8), 1189-1196. https://doi.org/10.1093/treephys/27.8.1189
Troll, W., & Lindsley, J. (1955). A photometric method for the determination of proline. Journal of Biological Chemistry, 215, 655- 660.
Vargas, F.J., Romero, M., Plana, J., Rovira, M., Batlle, I. (1995). Characterization and behaviour of pistachio cultivars in Catalonia (Spain). Acta Horticulturae, 419, 181-188. https://doi.org/10.17660/ActaHortic.1995.419.29
Wahbi, S., Wakrim, R., Aganchich, B., Tahi, H., & Serraj, R.  (2005). Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate: I. Physiological and agronomic responses. Agriculture, Ecosystems & Environment, 106 (2–3), 289-301. https://doi.org/10. 1016/j.agee.2004.10.015
Yamazaki, S., & Dillenburg, L.C. (1999). Measurements of leaf relative water content in Araucaria angustifolia. Brazilian Journal of Plant Physiology, 11, 69-75.
Zandalinas, S.I., Rivero, R.M., Martínez, V., Gomez-Cadenas, A., & Arbona, V. (2016). Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biology, 16, 105. https://doi.org/10.1186/s12870-016-0791-7.