Document Type : Original Article

Authors

1 Department of Horticultural Science, College of Agriculture, University of Birjand, Birjand, Iran

2 Department of Horticulture and Special Plants Regional Research Centre, Faculty of Agriculture, University of Birjand, Iran

3 Department of Soil Science and Engineering, College of Agriculture, University of Birjand, Birjand, Iran

Abstract

Purpose: In order to assay the impact of silicon (Si) and nano-Si on morphological and physiological traits of pot marigold (Calendula officinalis L.) under salt stress conditions, an experiment was conducted under greenhouse and field conditions. Research Method: The experiment was based on a completely randomized design including two levels of saline water (1.1 (control) and 6.1 dS m-1) and three levels of foliar spray (0, 2.5 mM Si and nano-Si) with 4 replications. Findings: Salinity stress decreased the vegetative and flowering parameters of pot marigold in the both conditions. Supplemental Si and nano-Si increased the dry weight of flowers under salt stress in the greenhouse (47 and 71%) and field (86 and 94%) conditions, respectively. Foliar application of nano-Si enhanced the flower total phenols of salt-stressed plants by 76% (greenhouse) and 50% (field), respectively. Under saline conditions, the use of nano-Si increased the flower antioxidant activity in the field by 17% in comparison to the control. Supplemental Si and nano-Si could reduce the negative impacts of salinity through increasing enzymatic and non-enzymatic antioxidants, accumulating soluble sugars, improving water relations, and enhancing chlorophyll content. Research limitations: No limitations were found. Originality/value: Based on the results of present study, the use of Si and nano-Si improved the growth and physiological characteristics of pot marigold under saline conditions.

Keywords

Main Subjects

Abdel-Haliem, M.E.F., Hegazy, H.S., Hassan, N.S. & Naguib, D.M. (2017). Effect of silica ions and nano silica on rice plants under salinity stress. Ecological Engineering, 99, 282–289. https://doi.org/10.1016/j.ecoleng.2016.11.060. 
Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez- Blanco, M. & Hernandez, J. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7, 18. https://doi.org/10.3390/agronomy7010018.
Ahanger, M.A., Tomar, N.S., Tittal, M., Argal, S. & Agarwal, R. (2017). Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants, 23, 731-744. https://doi.org/10.1007/s12298-017-0462-7.
Ahmad, P., Ahanger, M.A., Alam, P., Alyemeni, M.N., Wijaya, L., Ali, S. & Ashraf, M. (2019). Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. Journal of Plant Growth Regulation, 38, 70–82. https://doi.org/10.1007/s00344-018-9810-2.
Arena, M.E., Postemsky, P.D. & Curvetto, N.R. (2017). Changes in the phenolic compounds and antioxidant capacity of Berberis microphylla G. Forst. berries in relation to light intensity and fertilization. Scientia Horticulturae, 218, 63–71. https://doi.org/10.1016/j.scienta.2017.02.004
Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgarisPlant Physiology, 24, 1-15.  https://doi.org/10.1104/pp.24.1.1.
Avestan, S., Ghasemnezhad, M., Esfahani, M., & Barker, A. V. (2021). Effects of nanosilicon dioxide on leaf anatomy, chlorophyll fluorescence, and mineral element composition of strawberry under salinity stress. Journal of Plant Nutrition, 44(20), 3005-3019. https://doi.org/10.1080/01904167.2021.1936036 
Bayat, H., Alirezaie, M. & Neamati, H. (2012). Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (Calendula officinalis L.) under salinity stress. Journal of Stress Physiology & Biochemistry, 8, 258-267.
Bayat, H., Alirezaie, M., Neamati, H. & Saadabad, A.A. (2013). Effect of silicon on growth and ornamental traits of salt-stressed calendula (Calendula officinalis L.). Journal of Ornamental Plants, 3, 207–214.
Bayat, H. & Moghadam, A.N. (2019). Drought effects on growth, water status, proline content and antioxidant system in three Salvia nemorosa L. cultivars. Acta Physiologiae Plantarum41(9), 149. https://doi.org/10.1007/s11738-019-2942-6. 
Blainski, A., Lopes, G.C. & de Mello, J.C.P. (2013). Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules, 18, 6852-6865. https://doi.org/10.3390/molecules18066852.
Cicek, N. & Çakirlar, H. (2002). The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology, 28, 66-74.
Conceição, S. S., Oliveira Neto, C. F. D., Marques, E. C., Barbosa, A. V. C., Galvão, J. R., Oliveira, T. B. D., ... & Gomes-Filho, E. (2019). Silicon modulates the activity of antioxidant enzymes and nitrogen compounds in sunflower plants under salt stress. Archives of Agronomy and Soil Science65(9), 1237-1247. https://doi.org/10.1080/03650340.2018.1562272.
Danila, A.O., Gatea, F. & Radu, G.L. (2011). Polyphenol composition and antioxidant activity of selected medicinal herbs. Chemistry of Natural Compounds, 47, 22-26. https://doi.org/10.1007/s10600-011-9822-7.
DeRosa, M.C., Monreal, C., Schnitzer, M., Walsh, R. Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91. https://doi.org/10.1038/nnano.2010.2. 
Epstein, E. (2009). Silicon: its manifold roles in plants. Annals of Applied Biology, 155, 155–160.  https://doi.org/10.1111/j.1744-7348.2009.00343.x.
Falouti, M., Ellouzi, H., Bounaouara, F., Farhat, N., Aggag, A. M., Debez, A., ... & Zorrig, W. (2022). Higher activity of PSI compared to PSII accounts for the beneficial effect of silicon on barley (Hordeum vulgare L.) plants challenged with salinity. Photosynthetica60(4), 508-520. https://doi.org/10.32615/ps.2022.031
Foyer, C.H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134-142. https://doi.org/10.1016/j.envexpbot.2018.05.003
Frew, A., Weston, L.A., Reynolds, O.L. & Gurr, G.M. (2018). The role of silicon in plant biology: a paradigm shift in research approach. Annals of Botany, 121, 1265-1273. https://doi.org/10.1093/aob/mcy009.
García-Risco, M. R., Mouhid, L., Salas-Pérez, L., López-Padilla, A., Santoyo, S., Jaime, L., ... & Fornari, T. (2017). Biological activities of Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) plant extracts. Plant Foods for Human Nutrition, 72, 96-102. https://doi.org/10.1007/s11130-016-0596-8.
Garg, N. & Bhandari, P. (2016). Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Protoplasma, 253, 1325–1345.
Ghafiyehsanj, E., Dilmaghani, K. & Hekmat Shoar, H. (2013). The effects of salicylic acid on some of biochemical characteristics of wheat (Triticum aestivum L.) under salinity stress. Annals of Biological Research, 4(6), 242-248.
González, L., & González-Vilar, M. (2001). Determination of relative water content. Handbook of Plant Ecophysiology Techniques, 207-212.  https://doi.org/10.1007/0-306-48057-3_14.
Gregory, P.J., Ismail, S., Razaq, I.B. & Wahbi, A. (2018). Soil salinity: current status and in depth analyses for sustainable use. Chapter 2 (No. IAEA-TECDOC--1841).
Haghighi, M. & Pessarakli, M. (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161, 111-117. https://doi.org/10.1016/j.scienta.2013.06.034. 
Hamdi, L., Suleiman, A., Hoogenboom, G. & Shelia, V. (2019). Response of the durum wheat cultivar Um Qais (Triticum turgidum subsp. durum) to salinity. Agriculture, 9(7), 135. https://doi.org/10.3390/agriculture9070135
Hanafy Ahmed, A.H., Harb, E.M., Higazy, M.A. & Morgan, S.H. (2008). Effect of silicon and boron foliar applications on wheat plants grown under saline soil conditions. International Journal of Agricultural Research, 3(1), 1-26. https://doi.org/10.3923/ijar.2008.1.26 
He, H., Yang, R., Li, Y., Ma, A., Cao, L., Wu, X., ... & Gao, Y. (2017). Genotypic variation in nitrogen utilization efficiency of oilseed rape (Brassica napus) under contrasting N supply in pot and field experiments. Frontiers in Plant Science8, 1825. https://doi.org/10.3389/fpls.2017.01825
Irigoyen, J.J., Emerich, D.W. & Sanchez Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84, 55-60.  https://doi.org/10.1034/j.1399-3054.1992.840109.x.
Ismail, L. M., Soliman, M. I., Abd El-Aziz, M. H., & Abdel-Aziz, H. M. (2022). Impact of silica ions and nano silica on growth and productivity of pea plants under salinity stress. Plants, 11(4), 494. https://doi.org/10.3390/plants11040494 
Jaffel-Hamza, K., Sai-Kachout, S., Harrathi, J., Lachaâl, M. & Marzouk, B. (2013). Growth and fatty acid composition of borage (Borago officinalis L.) leaves and seeds cultivated in saline medium. Journal of Plant Growth Regulation, 32(1), 200-207. https://doi.org/10.1007/s00344-012-9290-8.
Jang, S.W., Kim, Y., Khan, A.L., Na, C.I. & Lee, I.J. (2018). Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L. BMC Plant Biology18(1), 4. https://doi.org/10.1186/s12870-017-1216-y. 
Kafi, M., Nabati, J., Masoumi, A. & Mehrgerdi, M.Z. (2011). Effect of salinity and silicon application on oxidative damage of sorghum [Sorghum bicolor (L.) Moench.]. Pakistan Journal of Botany, 43(5), 2457-2462.
Kamenidou, S., Cavins, T.J. & Marek, S. (2009). Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. Scientia Horticulturae, 119, 297-301. https://doi.org/10.1016/j.scienta.2008.08.012. 
Kamenidou, S., Cavins, T.J. & Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 119, 297-301. https://doi.org/10.1016/j.scienta.2009.09.008.
Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., ... & Chen, J. T. (2019). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences, 21(1), 148. https://doi.org/10.3390/ijms21010148
Khalid, K. A., & Da Silva, J. T. (2012). Biology of Calendula officinalis Linn.: focus on pharmacology, biological activities and agronomic practices. Medicinal and Aromatic Plant Science and Biotechnology6(1), 12-27.
Khan, W., Aziz, T., Maqsood, M., Farooq, M., Abdullah, Y., Ramzani, P. & Bilal, H.M. (2018). Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants. Photosynthetica, 56, 1047-1057. https://doi.org/10.1007/s11099-018-0812-x.
Khan, A., Khan, A.L., Muneer, S., Kim, Y.H., Al-Rawahi, A. & Al-Harrasi, A. (2019). Silicon and salinity: crosstalk in crop-mediated stress tolerance mechanisms. Frontiers in Plant Science, 10, 1429. https://doi.org/10.3389/fpls.2019.01429.
Khoshgoftarmanesh, A.H., Khodarahmi, S. & Haghighi, M. (2014). Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress. Archives of Agronomy and Soil Science, 60, 639–653. https://doi.org/10.1080/03650340.2013.822487.
Koleva, I.I., Van Beek, T.A., Linssen, J.P.H., de Groot, A. & Evstatieva, L.N. (2002). Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochemical Analysis, 13, 8-17. https://doi.org/10.1002/pca.611.
Kumar, V., Shriram, V., Jawali, N. & Shitole, M.G. (2007). Differential response of indica rice genotypes to NaCl stress in relation to physiological and biochemical parameters. Archives of Agronomy and Soil Science, 53(5), 581-592. https://doi.org/10.1080/03650340701576800.
Lutts, S., Kinet, J. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389–398. https://doi.org/10.1006/ anbo.1996.0134.
Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50, 11-18. https://doi.org/10.1080/00380768.2004.10408447.
Mahdieh, M., Habibollahi, N., Amirjani, M., Abnosi, M. & Ghorbanpour, M. (2015). Exogenous silicon nutrition ameliorates salt-induced stress by improving growth and efficiency of PSII in Oryza sativa L. cultivars. Journal of Soil Science and Plant Nutrition, 15, 1050-1060. https://doi.org/10.4067/s0718-95162015005000073. 
Mahmoud, A.W.M., Abdeldaym, E.A., Abdelaziz, S.M., El-Sawy, M.B. & Mottaleb, S.A. (2020). Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy, 10(1), 19. https://doi.org/10.3390/agronomy10010019.
Matoh, T., Kairusmee, P., & Takahashi, E. (1986). Salt-induced damage to rice plants and alleviation effect of silicate. Soil Science and Plant Nutrition32(2), 295-304. https://doi.org/0.1080/00380768.1986.10557506
Monica, R.C. & Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia, 62(2), 161-165. https://doi.org/10.1080/00087114.2004.10589681. 
Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-81.
Mota, A. P. Z., Oliveira, T. N., Vinson, C. C., Williams, T. C. R., Costa, M. M. D. C., Araujo, A. C. G., ... & Brasileiro, A. C. M. (2019). Contrasting effects of wild Arachis dehydrin under abiotic and biotic stresses. Frontiers in Plant Science10, 497. https://doi.org/10.3389/fpls.2019.00416
Oraee, A. & Tehranifar, A. (2023). Relationship between silicon through potassium silicate and salinity tolerance in Bellis perennis L. Silicon, 15(1), 93-107. https://doi.org/10.1007/s12633-022-01988-x 
Pieczynski, M., Marczewski, W., Hennig, J., Dolata, J., Bielewicz, D., Piontek, P., ... & Szweykowska‐Kulinska, Z. (2013). Down‐regulation of CBP 80 gene expression as a strategy to engineer a drought‐tolerant potato. Plant Biotechnology Journal11(4), 459-469.
Sayed, E. G., Mahmoud, A. W. M., El-Mogy, M. M., Ali, M. A., Fahmy, M. A., & Tawfic, G. A. (2022). The effective role of nano-silicon application in improving the productivity and quality of grafted tomato grown under salinity stress. Horticulturae, 8(4), 293. https://doi.org/10.3390/horticulturae8040293 
Sharifiasl, R., Kafi, M., Saidi, M., & Kalatejari, S. (2019). Influence of nano-silica and humic acid on physiological characteristics of Bermuda grass (Cynodon dactylon L.) under salinity stress. Acta Scientiarum Polonorum Hortorum Cultus18(4), 203-212. https://doi.org/10.24326/asphc.2019.4.19.
Soundararajan, P., Manivannan, A., Ko, C. H., & Jeong, B. R. (2018). Silicon enhanced redox homeostasis and protein expression to mitigate the salinity stress in Rosa hybrida ‘Rock Fire’. Journal of Plant Growth Regulation37, 16-34. https://doi.org/10.1007/s00344-017-9705-7.
Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V., & Kannan, N. (2012). Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. Journal of Nanoparticle Research14, 1-14. https://doi.org/10.1007/s11051-012-1294-6. 
Torabi, F., Majd, A., & Enteshari, S. (2015). The effect of silicon on alleviation of salt stress in borage (Borago officinalis L.). Soil Science and Plant Nutrition61(5), 788-798. https://doi.org/10.1080/00380768.2015.1005540.
Tuna, A. L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S., & Girgin, A. R. (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany62(1), 10-16. https://doi.org/10.1016/j.envexpbot.2007.06.006. 
Turkan, I. (2011). Plant responses to drought and salinity stress: developments in a post-genomic era. Academic Press.
Vyrides, I., & Stuckey, D. C. (2017). Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: a review. Critical Reviews in Biotechnology37(7), 865-879. https://doi.org/10.1080/07388551.2016.1266460.
Wu, J., Mock, H. P., Giehl, R. F., Pitann, B., & Mühling, K. H. (2019). Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. Journal of Hazardous Materials364, 581-590. https://doi.org/10.1016/j.jhazmat.2018.10.052.
Yin, L., Wang, S., Li, J., Tanaka, K., & Oka, M. (2013). Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolorActa Physiologiae Plantarum35, 3099-3107. https://doi.org/10.1007/s11738-013-1343-5.
Yoo, K. M., Lee, C. H., Lee, H., Moon, B., & Lee, C. Y. (2008). Relative antioxidant and cytoprotective activities of common herbs. Food chemistry106(3), 929-936. https://doi.org/10.1016/j.foodchem.2007.07.006.
Yoshikawa, M., Murakami, T., Kishi, A., Kageura, T., & Matsuda, H. (2001). Medicinal flowers. III. Marigold. (1): hypoglycemic, gastric emptying inhibitory, and gastroprotective principles and new oleanane-type triterpene oligoglycosides, calendasaponins A, B, C, and D, from Egyptian Calendula officinalisChemical and Pharmaceutical Bulletin49(7), 863-870.
Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., & Deshmukh, R. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech9, 1-16. https://doi.org/10.1007/s13205-019-1613-z.
Zhu, Y. X., Gong, H. J., & Yin, J. L. (2019). Role of silicon in mediating salt tolerance in plants: a review. Plants8(6), 147. https://doi.org/10.3390/plants8060147
Zhu, Y., Guo, J., Feng, R., Jia, J., Han, W., & Gong, H. (2016). The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress. Plant and Soil406, 231-249. https://doi.org/10.1007/s11104-016-2877-2.
Zhu, Y. X., Xu, X. B., Hu, Y. H., Han, W. H., Yin, J. L., Li, H. L., & Gong, H. J. (2015). Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Reports34, 1629-1646. https://doi.org/10.1007/s00299-015-1814-9