Aalifar, M., Aliniaeifard, S., Arab, M., Mehrjerdi, M.Z. & Serek, M. (2020a). Blue light postpones senescence of carnation flowers through regulation of ethylene and abscisic acid pathway-related genes.
Plant Physiology and Biochemistry,
151, 103-112.
https://doi.org/10.1016/j.plaphy.2020.03.018
Aalifar, M., Aliniaeifard, S., Arab, M., Zare Mehrjerdi, M., Dianati Daylami, S., Serek, M., Woltering, E. & Li, T. (2020b). Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system.
Frontiers in Plant Science,
11, 511.
https://doi.org/10.3389/fpls.2020.00511
Blekkenhorst, L.C., Sim, M., Bondonno, C.P., Bondonno, N.P., Ward, N.C., Prince, R.L., Devine, A., Lewis, J.R. & Hodgson, J.M. (2018). Cardiovascular health benefits of specific vegetable types: a narrative review.
Nutrients,
10(5), 595.
https://doi.org/10.3390/nu10050595
Dąbrowski, P., Cetner, M.D., Samborska, I.A. & Kalaji, M.H. (2015). Measuring light spectrum as a main indicator of artificial sources quality.
Journal of Coastal Life Medicine,
3(5), 400-406.
https://doi.org/10.12980/jclm.3.2015j5-25
Esmaeili, S., Aliniaeifard, S., Dianati Daylami, S., Karimi, S., Shomali, A., Didaran, F., Telesiński, A., Sierka, E. & Kalaji, H.M. (2022). Elevated light intensity compensates for nitrogen deficiency during chrysanthemum growth by improving water and nitrogen use efficiency.
Scientific Reports,
12(1), 10002.
https://doi.org/10.1038/s41598-022-14163-4
Ghasemi, A. & Zahediasl, S. (2012). Normality tests for statistical analysis: a guide for non-statisticians.
International Journal of Endocrinology and Metabolism,
10(2), 486.
https://doi.org/10.5812/ijem.3505
Ghasemnezhad, M., Sherafati, M. & Payvast, G.A. (2011). Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (
Capsicum annum) fruits at two different harvest times.
Journal of Functional Foods,
3(1), 44-49.
https://doi.org/10.1016/j.jff.2011.02.002
González-Real, M.M., Liu, H.-Q. & Baille, A. (2009). Influence of fruit sink strength on the distribution of leaf photosynthetic traits in fruit-bearing shoots of pepper plants (
Capsicum annuum L.).
Environmental and Experimental Botany,
66(2), 195-202.
https://doi.org/10.1016/j.envexpbot.2009.01.005
Guo, X., Hao, X., Khosla, S., Kumar, K., Cao, R. & Bennett, N. (2016). Effect of LED interlighting combined with overhead HPS light on fruit yield and quality of year-round sweet pepper in commercial greenhouse.
Acta Horticulturae, 71-78.
https://doi.org/10.17660/actahortic.2016.1134.10
Hao, X., Guo, X., Lanoue, J., Zhang, Y., Cao, R., Zheng, J., Little, C., Leonardos, D., Kholsa, S. & Grodzinski, B. (2017). A review on smart application of supplemental lighting in greenhouse fruiting vegetable production.
Acta Horticulturae,
1227, 499-506.
https://doi.org/10.17660/actahortic.2018.1227.63
Hernández, R. & Kubota, C. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs.
Environmental and Experimental Botany,
121, 66-74.
https://doi.org/10.1016/j.envexpbot.2015.04.001
Hikosaka, S., Iyoki, S., Hayakumo, M. & Goto, E. (2013). Effects of light intensity and amount of supplemental LED lighting on photosynthesis and fruit growth of tomato plants under artificial conditions.
Journal of Agricultural Meteorology,
69(2), 93-100.
https://doi.org/10.2480/agrmet.69.2.5
Ignat, T., Schmilovitch, Z., Feföldi, J., Bernstein, N., Steiner, B., Egozi, H. & Hoffman, A. (2013). Nonlinear methods for estimation of maturity stage, total chlorophyll, and carotenoid content in intact bell peppers.
Biosystems Engineering,
114(4), 414-425.
https://doi.org/10.1016/j.biosystemseng.2012.10.001
Javadi Asayesh, E., Aliniaeifard, S., Askari, N., Roozban, M.R., Sobhani, M., Tsaniklidis, G., Woltering, E.J. & Fanourakis, D. (2021). Supplementary light with increased blue fraction accelerates emergence and improves development of the inflorescence in Aechmea, Guzmania and Vriesea.
Horticulturae,
7(11), 485.
https://doi.org/10.3390/horticulturae7110485
Javanmardi, J. & Emami, S. (2013). Response of tomato and pepper transplants to light spectra provided by light emitting diodes.
International Journal of Vegetable Science,
19(2), 138-149.
https://doi.org/10.1080/19315260.2012.684851
Joshi, N.C., Ratner, K., Eidelman, O., Bednarczyk, D., Zur, N., Many, Y., Shahak, Y., Aviv-Sharon, E., Achiam, M. & Gilad, Z. (2019). Effects of daytime intra-canopy LED illumination on photosynthesis and productivity of bell pepper grown in protected cultivation.
Scientia Horticulturae,
250, 81-88.
https://doi.org/10.1016/j.scienta.2019.02.039
Kim, B.S., Lee, H.O., Kim, J.Y., Kwon, K.H., Cha, H.S. & Kim, J.H. (2011). An effect of light emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry.
Horticulture, Environment, and Biotechnology,
52, 35-39.
https://doi.org/10.1007/s13580-011-0189-2
Kim, D. & Son, J.E. (2022). Adding far-red to red, blue supplemental light-emitting diode interlighting improved sweet pepper yield but attenuated carotenoid content.
Frontiers in Plant Science,
13.
https://doi.org/10.3389/fpls.2022.938199
Klamkowski, K., Treder, W., Wójcik, K., Puternicki, A. & Lisak, E. (2014). Influence of supplementary lighting on growth and photosynthetic activity of tomato transplants.
Infrastruktura i Ekologia Terenów Wiejskich, IV/3),
http://doi.org/10.14597/infraeco.2014.4.3.103
Lan, W., Changwei, Z. & Yongjun, W. (2022). Dry mass input into fruits can be predicted by fine root morphology of pepper cultivars exposed to varied lighting spectra.
Notulae Botanicae Horti Agrobotanici Cluj-Napoca,
50(4), 12930-12930.
https://doi.org/10.15835/nbha50412930
Lanoue, J., Little, C., Hawley, D. & Hao, X. (2022). Addition of green light improves fruit weight and dry matter content in sweet pepper due to greater light penetration within the canopy.
Scientia Horticulturae,
304, 111350.
https://doi.org/10.1016/j.scienta.2022.111350
Li, H., Tang, C., Xu, Z., Liu, X. & Han, X. (2012). Effects of different light sources on the growth of non-heading Chinese cabbage (
Brassica campestris L.).
Journal of Agricultural Science,
4(4), 262.
https://doi.org/10.5539/jas.v4n4p262
Lin, W. & Jolliffe, P. (1996). Light intensity and spectral quality affect fruit growth and shelf life of greenhouse-grown long English cucumber.
Journal of the American Society for Horticultural Science,
121(6), 1168-1173.
https://doi.org/10.21273/jashs.121.6.1168
Liu, C., Wan, H., Yang, Y., Ye, Q., Zhou, G., Wang, X., Ahammed, G.J. & Cheng, Y. (2022a). Post-harvest LED light irradiation affects firmness, bioactive substances, and amino acid compositions in chili pepper (
Capsicum annum L.).
Foods,
11(17), 2712.
https://doi.org/10.3390/foods11172712
Liu, Y., Schouten, R.E., Tikunov, Y., Liu, X., Visser, R.G., Tan, F., Bovy, A. & Marcelis, L.F. (2022b). Blue light increases anthocyanin content and delays fruit ripening in purple pepper fruit.
Postharvest Biology and Technology,
192, 112024.
https://doi.org/10.1016/j.postharvbio.2022.112024
Martínez-Zamora, L., Castillejo, N. & Artés-Hernández, F. (2021). Postharvest UV-B and photoperiod with blue + red LEDs as strategies to stimulate carotenogenesis in bell peppers.
Applied Sciences,
11(9), 3736.
https://doi.org/10.3390/app11093736
Navarro, J., Garrido, C., Carvajal, M. & Martinez, V. (2002). Yield and fruit quality of pepper plants under sulphate and chloride salinity.
The Journal of Horticultural Science and Biotechnology,
77(1), 52-57.
https://doi.org/10.1080/14620316.2002.11511456
Naznin, M.T., Lefsrud, M., Gravel, V. & Azad, M.O.K. (2019). Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment.
Plants,
8(4), 93.
https://doi.org/10.3390/plants8040093
Nederhoff, E. & Marcelis, L. (2010). Calculating Light and Lighting.
Practical Hydroponics and Greenhouses,
112, 43-51.
https://edepot.wur.nl/156931
Olatunji, T.L. & Afolayan, A.J. (2018). The suitability of chili pepper (
Capsicum annuum L.) for alleviating human micronutrient dietary deficiencies: A review.
Food Science & Nutrition,
6(8), 2239-2251.
https://doi.org/10.1002/fsn3.790
Papadopoulos, A.P. (1994). Growing greenhouse seedless cucumbers in soil and in soilless media. Ottawa, Ontario: Agriculture and Agri-Food Canada.
Pepin, S., Fortier, E., Béchard-Dubé, S., Dorais, M., Ménard, C. & Bacon, R. (2013). Beneficial effects of using a 3-D LED interlighting system for organic greenhouse tomato grown in Canada under low natural light conditions.
Acta Horticulturae,
1041, 239-246.
https://doi.org/10.17660/actahortic.2014.1041.28
Prinzenberg, A.E., van der Schoot, H., Visser, R.G., Marcelis, L.F., Heuvelink, E. & Schouten, H.J. (2021). Genetic mapping of the tomato quality traits brix and blossom-end rot under supplemental LED and HPS lighting conditions.
Euphytica,
217(12), 213.
https://doi.org/10.21203/rs.3.rs-387667/v1
Sæbø, A., Krekling, T. & Appelgren, M. (1995). Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro.
Plant Cell, Tissue and Organ Culture,
41, 177-185.
https://doi.org/10.1007/bf00051588
Stadler, C. (2011). Effects of lighting time and lighting source on growth, yield and quality of greenhouse sweet pepper. 15/07/2009 – 31/12/2010 Agricultural University of Iceland.
Takahashi, M., Kaneko, S., Koike, O., Kanno, H., Umeda, H. & Iwasaki, Y. (2020). Temporal source strength estimation of sweet pepper for crop management and LED supplementation efficiency improvement.
Engineering in Agriculture, Environment and Food,
13(3), 73-80.
https://doi.org/10.37221/eaef.13.3_73
Wojciechowska, R., Długosz-Grochowska, O., Kołton, A. & Żupnik, M. (2015). Effects of LED supplemental lighting on yield and some quality parameters of lamb's lettuce grown in two winter cycles.
Scientia Horticulturae,
187, 80-86.
https://doi.org/10.1016/j.scienta.2015.03.006
Yamori, W., Kondo, E., Sugiura, D., Terashima, I., Suzuki, Y. & Makino, A. (2016). Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6/f complex.
Plant, Cell & Environment,
39(1), 80-87.
https://doi.org/10.1111/pce.12594