Aalifar, M., Aliniaeifard, S., Arab, M., Zare Mehrjerdi, M., Dianati Daylami, S., Serek, M., Woltering, M., & Li, T. (2020). Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system. Frontiers in Plant Science, 11. 511. https://doi.org/10.3389/fpls.2020.00511.
Alaey, M., Babalar, M., Naderi, R., & Kafi, M. (2011). Effect of pre-and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biology and Technology, 61(1), 91-94. https://doi.org/10.1016/j.postharvbio.2011.02.002.
Alsanius, B.W., Bergstrand, K.J., Hartmann, R., Gharaie, S., Wohanka, W., Dorais, M., & Rosberg, A.K. (2017). Ornamental flowers in new light: artificial lighting shapes the microbial phyllosphere community structure of greenhouse grown sunflowers (Helianthus annuus L.). Scientia Horticulturae, 216, 234-247. https://doi.org/10.1016/j.scienta.2017.01.022.
Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15.
Carotti, L., Potente, G., Pennisi, G., Ruiz, K.B., Biondi, S., Crepaldi, A., Orsini, F., Gianquinto, G., & Antognoni, F. (2021). Pulsed LED light: exploring the balance between energy use and nutraceutical properties in indoor-grown lettuce.
Agronomy,
11, 1106.
https://doi.org/10.3390/agronomy11061106.
Cioć, M., Dziurka, M., & Pawłowska, B. (2022). Changes in endogenous phytohormones of gerbera jamesonii axillary shoots multiplied under different light emitting diodes light quality. Molecules, 27(6), 1804. https://doi.org/10.3390/molecules27061804.
Dayani, S., Heydarizadeh, P., & Sabzalian, M.R. (2018). Efficiency of light-emitting diodes for future photosynthesis. In Handbook of photosynthesis (pp. 761-783). CRC press.
Dezhabad, F., & Haghighi, M. (2020). Bottom-cold stress was less harmful than cold-air stress on tomato seedling production treated with boric acid. Acta Physiologiae Plantarum, 42(4), 44. https://doi.org/10.1007/s11738-020-3035-2.
Duong, T.N., Takamura, T., Watanabe, H., & Tanaka, M. (2000). Light emitting diodes (LEDs) as a radiation source for micropropagation of strawberry. Transplant Production in the 21st Century. Springer. Dordrecht. (pp. 114-118).
Fan, X.X., Xu, Z.H., Liu, X.Y., Tang, C.M.L., Wang, W., & Han, X.L. (2013). Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Horticulturae, 153, 50-55. https://doi.org/10.1016/j.scienta.2013.01.017.
Fu, Y., Li, H., Yu, J., Liu, H., Cao, Z., Manukovsky, N.S., & Liu, H. (2017). Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (
Lactuca sativa L. Var. Youmaicai).
Scientia Horticulturae, 214, 51-57.
https://doi.org/10.1016/j.scienta.2016.11.020.
Gao, D., Ji, X., Yuan, Q., Pei, W., Zhang, X., Li, F., Han, Q., & Zhang, S. (2023). Effects of total daily light integral from blue and broad-band red LEDs on flowering of saffron (Crocus sativus L.). Scientific Reports, 13, 7175. https://doi.org/10.1038/s41598-023-34424-0.
Hao, X., Little, C., Zheng, J.M., & Cao, R. (2016). Far-red LEDs improve fruit production in greenhouse tomato grown under high-pressure sodium lighting. Acta Horticulture, 134, 95–102. https://doi.org/10.17660/ActaHortic.2016.1134.13.
Hasperue, J.H., Rodoni, L.M., Guardianelli, L.M., Chaves, A.R., & Martínez, G.A. (2016). Use of LED light for brussels sprouts postharvest conservation. Scientia Horticulturae, 213, 281–286. https://doi.org/10.1016/j.scienta.2016.11.004.
Hedge, J.E., & Hofreiter, B.T. (1962). Carbohydrate chemistry 17. In Whistler, R.L. and Be Miller, J. N., Eds., Academic Press, New York.
Heo, J.W., Lee, C.W., Murthy, H.N., & Paek, K.Y. (2003). Influence of light quality and photoperiod on flowering of Cyclamen persicum Mill. cv. ‘Dixie White’. Plant Growth Regulation, 40, 7-10. https://doi.org/10.1023/A:1023096909497.
Hernandez, R. (2013). Growth and development of greenhouse vegetables Seedlings under supplemental LED lighting. The University of Arizona. Arizona.
Johansen, N.S., Torp, T., & Solhaug, K.A. (2018). Phototactic Response of Frankliniella occidentalis to sticky traps with blue light emitting diodes in herb and alstroemeria greenhouses. Crop Protection, 114, 120–128.
Kurepin, L.V., Walton, L.J., Yeung, E.C., Chinnappa, C.C., & Reid, D.M. (2010). The interaction of light irradiance with ethylene in regulating growth of Helianthus annuus shoot tissues. Plant Growth Regulation, 62, 43-50. https://doi.org/10.1007/s10725-010-9483-8.
Lee, C.G., & Palsson, B.Ø. (1994). High‐density algal photobioreactors using light‐emitting diodes. Biotechnology & Bioengineering, 44(10), 1161-1167. https://doi.org/10.1002/bit.260441002.
Li, Y., Xin, G., Wei, M., Shi, Q., Yang, F., & Wang, X. (2017). Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities.
Scientia Horticulturae,
225, 490-497.
https://doi.org/10.1016/j.scienta.2017.07.053.
Livadariu, O., Maximilian, C., Rahmanifar, B., & Cornea, C.P. (2023). LED technology applied to plant development for promoting the accumulation of bioactive compounds: a review. Plants, 12(5), 1075. https://doi.org/10.3390/plants12051075.
Naznin, M.T., Lefsrud, M., Gravel, V., & Azad, M.O.K. (2019). Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants, 8(4), 93.
Nikbakht, A., & Ashrafi, N. (2019). Cut flowers: practical and scientific growing. Isfahan. Iran: Isfahan University of Technology. (In Persian).
Park, Y.G., & Jeong, B.R. (2020). How supplementary or night-interrupting low-intensity blue light affects the flower induction in chrysanthemum, a qualitative short-day plant. Plants, 9(12), 1694.
Pérez-Grajales, M., Martínez-Damián, M., Cruz Álvarez, O., Potrero-Andrade, S., Peña Lomeli, A., González-Hernández, V., & Villegas-Monter, A. (2019). Content of capsaicinoids and physicochemical characteristics of Manzano hot pepper grown in greenhouse.
Notulae Botanicae Horti Agrobotanici Cluj-Napoca,
47(1), 119-127.
https://doi.org/10.15835/nbha47111241.
Pettersen, R.I., Moe, E., & GIslerod, H.R. (2007). Growth of pot roses and postharvest rate of water loss as affected by air humidity and temperature variations during growth under continuous light. Scientia Horticulturae, 114, 207–213. https://doi.org/10.1016/j.scienta.2007.06.009.
Rapisarda, P., Fanella, F., & Maccarone, E. (2000). Reliability of analytical methods for determining anthocyanins in blood orange juices. Journal of Agricultural and Food Chemistry, 48(6), 2249-2252. https://doi.org/10.1021/jf991157h.
Rasouli, O., Ahmadi, N., Behmanesh, M., & Nergi, M.D. (2015). Effects of BA and TDZ on postharvest quality and expression of laccase and aquaporin genes in cut rose ‘Sparkle’. South African Journal of Botany, 99, 75-79. https://doi.org/10.1016/j.sajb.2015.03.191.
Sabzalian, M.R., Heydarizadeh, P., Zahedi, M., Boroomand, A., Agharokh, M., Sahba, M.R., & Schoefs, B. (2014). High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agronomy for Sustainable Development, 34, 879–886. https://doi.org/10.1007/s00425- 004-1418-z.
Sakurako, H., Shota, Y., Haruki, K., Saashia, F., Shigekazu, K., Ken-Ichiro, S., & Atsushi, T. (2021). A BLUS1 kinase signal and a decrease in intercellular CO2 concentration are necessary for stomatal opening in response to blue light. Plant Cell, 33, 1813–1827.
Samuoliene, G., Brazaityte, A., Sirtautas, R., Novickovas, A., & Duchovskis, P. (2011). Supplementary red-LED lighting affects phytochemicals and nitrate of baby leaf lettuce. Journal of Food, Agriculture and Environment, 9, 271-274.
Samuoliene, G., Sirtautas, R., Brazaityte, A., Virsile, A., & Duchovskis, P. (2012). Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons. Journal of Food, Agriculture and Environment, 10, 701-706.
Schroeter-Zakrzewska, A., & Pradita, F.A. (2021). Effect of colour of light on rooting cuttings and subsequent growth of chrysanthemum (Chrysanthemum × grandiflorum Ramat./Kitam.). Agriculture, 11(7), 671. https://doi.org/10.3390/agriculture11070671.
Shi, L., He, S., Wang, Z., & Kim, W.S. (2021). Influence of nocturnal supplemental lighting and different irrigation regimes on vase life and vase performance of the hybrid rose ‘Charming Black’. Horticultural Science and Technology, 39(1), 23-36.
Song, Y., Shang, W., Ma, D., Wang, Z., He, S., Shi, L., Shen, Y., He, D., Wang, E., & Wang, X. (2022). Effect on the growth and photosynthetic characteristics of
Anthurium andreanum (‘Pink Champion’, ‘Alabama’) under hydroponic culture by different LED light Spectra.
Horticulturae, 8(5), 389.
https://doi.org/10.3390/horticulturae8050389.
Wu, M.C., Hou, C.Y., Jiang, C.M.Y., Wang, T.C., Wang, Y.H., Chen, H.H., & Chang, M. (2007). A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chemistry, 101, 1753-1758. https://doi.org/10.1016/j.foodchem.2006.02.010.
Zhang, X., Bian, Z., Yuan, X., Chen, X., & Lu, C. (2020). A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends in Food Science & Technology, 99, 203-216.