Document Type : Original Article

Authors

1 Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Aliko Dangote University of Science and Technology, Wudil, Kano State, Nigeria

2 Department of Biology, Faculty of Science, Aliko Dangote University of Science and Technology, Wudil, Kano State, Nigeria

3 Department of Food Science and Technology, Faculty of Agriculture, Bayero University Kano, State Nigeria

4 Department of Animal Science, Faculty of Agriculture and Agricultural Technology, Aliko Dangote University of Science and Technology, Wudil, Kano State, Nigeria

Abstract

Purpose: Fungal infections have become the most common problem to cause postharvest loss in tomato enterprise across Nigeria. Morphology-based identification of fungal species usually provides the inconclusive results with several species remain unidentified. Molecular identification method was used to supplement morphology-based techniques to identify the fungal species. Research Method: A Deoxyribonucleic Acid (DNA) through 5.8S-ITS (Internal Transcribed Spacer) region of the ribosomal DNA (rDNA) was used to identify 180 infested tomato specimens. The samples were collected from farm, retail and wholesale points in Kwanar Gafan located at Kura LGA of Kano State. Findings: Eight haplotypes have been detected from the total fungal specimens examined, A 65.6% of fungal specimens from wholesales and farms constituted haplotype-1 and identified as Pichia kudriavzevii (with 99.54% similarity) as BLAST in National Centre for Biotechnology Information (NCBI) database. The remaining seven haplotypes were exclusively found in the retailing points and largely constitutes Aspergillus spp., Mucor fragilis, Russula atroglauca, Ganoderma sp., Alternaria spp., Exserohilum rostratum, Colletotrichum boninense, Naganishia sp. and Cladosporium spp. Research limitations: Further research on molecular identification from other parts of kano is required for better understanding the fungi associated with postharvest loss in the state. Originality/Value: Pichia kudriavzevii is a single and only dominant fungal species that infest tomatoes in both farms and wholesale points (65.6%). However, 34.4% of the diverse fungal species have been found in retailing points which is related to the rapid infestation of tomatoes.

Keywords

Main Subjects

Adedeji, O., Taiwo, K., Akanbi, C. & Ajani, R. (2006). Physico-chemical properties of four tomato cultivators grown in Nigeria. Journal of Food Processing and Preservation, 30(1), 79-86. https://doi.org/10.1111/j.1745-4549.2005.00049.x
Aghadi, C. N., John Mburu, J. & Kalaba, M. (2019). Effect of youth participation in fresh tomato       market on postharvest losses and profitability in Nigeria. 2nd All Africa Postharvest Congress and Exhibition. https://au.int/en/newsevents/20190917/2nd-all-africa-postharvest-congress-and-exhibition
Akbar, A., Hussain, S., Ullah, K., Fahim, M. & Ali, G. S. (2018). Detection, virulence and genetic diversity of Fusarium species infecting tomato in Northern Pakistan. PLoS ONE, 13(9), e0203613. https://doi.org/10.1371/journal.pone.0203613
Ayendiji, A. O. R., & Adeniyi, O. D. (2011). Determination of postharvest losses among tomato farmers in Imeko-Afon local government area of Ogun state, Nigeria. Global Journal of Science Frontier Research, 11, 22-28. https://globaljournals.org/GJSFR_Volume11/5-Determinant-Post-Harvest-Losses-among-Tomato.pdf
Britt, B. F, & Kristin, R. (2011). Tomato consumption and health: Emerging benefits. American Journal of Lifestyle Medicine, 8, 182-191. https://doi.org/10.1177/155982761038748
Collins, C. H. & Lyne, C. M. (2004). Microbiological methods. London: Arnold, A member of the Hodder Headline Group.
Dandago, M. A., Gungula, D. T., & Nahunnaro, H. (2017). Effect of postharvest dip and storage condition on quality and shelf life of tomato fruits (Lycopersicon Esculentum MILL.) in Kura, Nigeria. Pakistan Journal of Food Sciences, 27(1), 61-71.
Dandago, M. A., Gungula, D. T., & Nahunnaro, H. (2017). Effect of packaging and storage condition on quality and storage life of tomato fruits. Journal of Postharvest Technology, 5(4), 71-80.
Dandago, M. A., Gungula, D. T., & Nahunnaro, H. (2018). Isolation and identification of fungi responsible for postharvest decay of tomato fruits (Lycopersicon esculentum MILL) in Kura, Kano State, Nigeria. Book of Proceedings: ICAFT 2018.
Etebu, E., Nwauzoma, A. B., & Bawo1, D. D. S. (2013). Postharvest spoilage of tomato (Lycopersicon esculentum Mill.) and control strategies in Nigeria. Journal of Biology, Agriculture and Healthcare, 3(10), 51-61. www.iiste.org
FAOSTAT (2014). Global tomato production in 2012. Rome, FAO.
Gherbawy, Y., Hussein, M. A., Runge, F., & Spring, O. (2018). Molecular characterization of Alternaria alternata population isolated from Upper Egyptian tomato fruits. Journal of Phytopathology, 166(10), 1–13. https://doi.org/10.1111/jph.12752
Hasan, N. A., & Zanuddin, N. A. M. (2020). Molecular identification of isolated fungi from banana, mango and pineapple spoiled fruits. AIP Conference Proceedings 2020, 020074. https://doi.org/10.1063/1.5062700
Kassa, M. A., & Senay, T. L. (2019). Evaluating effectiveness of evaporative coolers in reducing environmental temperature and reducing postharvest loss of tomato. 2nd All Africa Postharvest Congress and Exhibition. https://au.int/en/newsevents/20190917/2nd-all-africa-postharvest-congress-and-exhibition
Kitinoja, L., Odeyemi, O. M., Dubey, N., Musanase, S., & Gill, G. S. (2019). Commodity system assessment studies on the postharvest handling and marketing of tomatoes in Nigeria, Rwanda and Maharashtra, India. Journal of Horticulture and Postharvest Research, 2(special issue: postharvest losses of horticultural crops), 1-14. https://doi.org/10.22077/jhpr.2019.2060.1040
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
Kutama, A. S., Aliyu, B. S., & Mohammed, I. (2007). Fungal pathogens associated with tomato wicker storage baskets. Science World Journal, 2(2), 38-39. www.sciecnceworldjournal.com
Lamidi, Y., Agieni, G. A & Israel, O. A., (2020). Isolation and identification of fungi associated with tomato (Lycopersicon Esculentum M.) ROT. Sumerianz Journal of Agriculture and Veterinary, 3(5), 54-56. https://www.sumerianz.com/
Liu, C. L., Wen, J. Z., & Yang, M. X. (2007). Application of rDNA-ITS in molecular test of Phytopat Hogenic fungi. (In Chinese). Journal of Northeast Agricultural University, 38(1), 101-106. https://caod.oriprobe.com/issues/176049/toc.htm
Liu, X., Gao, Y., Yang, H., Li, L., Jiang, Y., Li, Y., & Zheng, J. (2020). Pichia kudriavzevii retards fungal decay by influencing the fungal community succession during cherry tomato fruit storage. Food Microbiology, 88, 103404. https://doi.org/10.1016/j.fm.2019.103404
Mailafia, S., Okoh, G. R., Olabode, H. O. & Osanupin, R. (2017). Isolation and identification of fungi associated with spoilt fruits vended in Gwagwalada market, Abuja, Nigeria. Veterinary World, 10(4), 393-397. http://doi.org/10.14202/vetworld.2017.393-397
Maurya, S., Regar, R., Kumar, S., & Dubey, S. (2022). Management tactics for early blight of tomato caused by Alternaria solani: A review. Journal of Plant Biology and Crop Research, 5(1), 1062. http://meddocsonline.org/
Monte, J. A., De Carvalho, D. F., Medici, L. O., Da Silva, L. D. B., & Pimentel, C. (2013). Growth analysis and yield of tomato crop under different irrigation depths. Revista Brasileira de Engenharia Agrícola e Ambiental 17(9), 926-931. http://doi.org/10.1590/S1415-43662013000900003
Mustapha, Y., & Yahaya, S. M. (2006). Isolation and identification of postharvest fungi associated with tomato (Lycopersicon esculentum) and pepper (Capsicum annum) from some selected irrigation sites in Kano state, Nigeria. Biology & Environmental Science Journal for the Tropics, 3(3), 139-141.
Nageen, Y., Wang, X., & Pecoraro, L. (2023). Seasonal variation of airborne fungal diversity and community structure in outdoor environments in Tianjin, China. Frontiers in Microbiology, 13, https://doi.org/10.3389/fmicb.2022.1043224
Poudel, B., Velázquez-del Valle, M. G., Hernández-Lauzardo, A. N., & Zhang, S. (2018). First report of Alternaria tomato causing leaf spot on sunflower in Mexico. Plant Disease, PDIS-07-18-1173-PDN–. https://doi.org/10.1094/PDIS-07-18-1173-PDN
Rani, V., & Khetarpaul, N. (2009). Nutrient composition of tomato products prepared using tomato grown under sodic condition with gypsum and farmyard manure treatment. Journal of the Science of Food and Agriculture, 89, 2601-2607. http://doi.org/10.1002/jsfa.3762
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E. & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets, Molecular Biology and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248
Sargent, S. A. & C. L. Moretti. (2004). Tomato. postharvest quality maintenance guidelines. In, USDA Agric. Handbook 66. commercial storage of fruits, vegetables and ornamentals. http://www.ba.ars.usda.gov/hb66/
Shankara, N., Joep, J., Marja, G., Martin, H., & Barbara, D. Cultivation of tomato production, processing and marketing. Agromisa Foundation and CTA, Wageningen ISBN Agromisa: 90-8573-039-2; ISBN CTA: 92-9081-299-0.
Sibomana, C. I., Opiyo, A. M., & Aguyoh, J. N. (2015). Influence of soil moisture levels and packaging on post-harvest qualities of tomatoes (Solanum lycopersicum). African Journal of Agricultural Research, 10(2), 1392-1400. http://doi.org/10.5897/AJAR2015.9491
Sinno, M., Ranesi, M., Gioia, L., d’Errico, G., & Woo, L. S. (2020). Endophytic fungi of tomato and their potential applications for crop improvement. Agriculture, 10(12), 587. http://doi.org/10.3390/agriculture10120587
Snowdon, A. L. (1991). A colour atlas of post-harvest diseases and disorders of fruits and vegetables. London: Wolfe Medical Publishers.
Tiong, L. K., Abd Latif, I., Kamarulzaman, N. H., & Nawi, N. M. (2018). Determinants of postharvest losses of fresh tomato among farmers in Cameron highlands and Lojing highlands, Malaysia. Book of Proceedings: ICAFT 2018.
Yahaya, S. M., & Ahmed, I. (2008). Determination of postharvest fungi associated with losses of tomato (Lycopersicon esculentum) from three irrigation sites in Kano state, Nigeria. Techno-Science Africana, 1(1), 61-64.
Yusuf, S. M., & Okunsanya, B. A. O. (2007). Studies on postharvest fungal rot of tomato fruits (Lycopersicon esculentum L.) in Yola, Adamawa state. Proceedings of the 25th Annual Conference of Horticultural Society of Nigeria, November 4-8, 2007, National Horticultural Research Institute Ibadan.