Document Type : Original Article

Authors

1 Department of Horticultural Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

2 Department of Horticultural Sciences, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran

3 Medicinal and Industrial Plant Research Institute, Ardakan, Iran

Abstract

Purpose: To investigate the effects of Putrescine and Indole-3-Butyric Acid (IBA) on the adventitious rooting of micro-cuttings and semi-hardwood cutting of Rosa damascena, this study was conducted under both in vitro and in vivo conditions. Research Method: The rooting of micro-cuttings was induced on the basal MS medium supplemented with five concentrations (0, 0.25, 0.5, 1 and 2 mg/L) of IBA and putrescine.  In vivo experiment, putrescine and IBA at five concentrations (0, 0.25, 0.5, 1 and 2 g/L) were applied on semi-hardwood damask cuttings, while a downward wounding was created by a sharp blade on the bases of cutting as another treatment. Findings: Data showed significant variations in the root number and root length for in vitro and in vivo cuttings treated with different concentrations of putrescine and IBA. The obtained results revealed that presence of putrescine and IBA in both conditions enhanced root formation, as significantly improved the number of roots and root length in each explant. Under in vitro conditions, the maximum root length and root number were observed on the MS medium supplemented with 1 mg/l IBA+1 mg/l putrescine. Research limitations: No limitations were found. Originality/Value: The present study highlighted the role of putrescine and IBA in the adventitious rooting of R. damascena, under both in vitro and in vivo situations.

Keywords

Main Subjects

Ahkami, A. H., Lischewski, S., Haensch, K. T., Porfirova, S., Hofmann, J., Rolletschek, H., Melzer, M., Franken, P., Hause, B., Druege, U., & Hajirezaei, M. R. (2009). Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytologist, 181, 613–625. https://doi.org/10.1111/j.1469-8137.2008.02704.x
Ahmadi, N. (2012). Rooting and growth of cutting from ethylene-low or ethylene-high sensitive miniature rose genotypes under mist condition. Acta Horticulturae, 893–898. https://doi.org/10.17660/ActaHortic.2012.952.113.
Akhtar, G., Jaskani, M. J., Sajjad, Y., & Akram, A. (2016). Effect of antioxidants, amino acids and plant growth regulators on in vitro propagation of Rosa centifolia. Iranian Journal of biotechnology, 14(1), 51.
Ambros, E. V., Vasilyeva, O. Y., & Novikova, T. I. (2016). Effects of in vitro propagation on ontogeny of Rosa canina L. micropropagated plants as a promising rootstock for ornamental roses. Plant Cell Biotechnology and Molecular Biology, 17, 72-78.
Anderson, R.G., Woods, T.A. (1999). An economic evaluation of single stem cut rose production. Acta Horticulturae, 481, 629-634.
Azadi, P., Beyrami Zadeh, E., & Otang Ntui, V. (2013). A simple protocol for somatic embryogenesis in Rosa hybrida L. cv. Apollo. The Journal of Horticultural Science and Biotechnology, 88(4), 399-402.
Bellini, C., Pacurar, D. I., & Perrone, I. (2014). Adventitious roots and lateral roots: similarities and differences. Annual Review of Plant Biology, 65, 639-666.     https://doi.org/10.1146/annurev-arplant-050213-035645.
Chen, D., Shao, Q., Yin, L., Younis, A., & Zheng, B. (2019). Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Frontiers in plant Science, 9, 1945. https://doi.org/10.21203/rs.3.rs-2049319/v1
Noor Camellia, N. A., Thohirah, L. A., Abdullah, N. A. P., & Mohd Khidir, O. (2009). Improvement on rooting quality of Jatropha curcas using indole butyric acid (IBA). Research Journal of Agriculture and Biological Sciences, 5(4), 338-343.
Creelman, R. A., Tierney, M. L., & Mullet, J. E. (1992). Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proceedings of the National Academy of Sciences, 89(11), 4938-4941.
Cristofori, V., Rouphael, Y., & Rugini, E. (2010). Collection time, cutting age, IBA and putrescine effects on root formation in Corylus avellana L. cuttings. Scientia Horticulturae, 124(2), 189-194. https://doi.org/10.1016/j.scienta.2009.12.034
De Klerk, G. J. (1996). Markers of adventitious root formation. Agronomie, 16(10), 609-616.
De Klerk, G. J., Van Der Krieken, W., & de Jong, J. C. (1999). Review the formation of adventitious roots: new concepts, new possibilities. In Vitro Cellular & Developmental Biology-Plant, 35, 189-199. https://doi.org/10.1007/s11627-999-0076-z
Denaxa, N. K., Roussos, P. A., & Vemmos, S. N. (2014). The possible role of polyamines to the recalcitrance of “Kalamata” olive leafy cuttings to root. Journal of Plant Growth Regulation, 33, 579-589. https://doi.org/10.1007/s00344-013-9407-8
Díaz-Sala, C. (2014). Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenile–adult transition. Frontiers in Plant Science, 5, 310. https://doi.org/10.3389/fpls.2014.00310.
Druege, U., Franken, P., & Hajirezaei, M. R. (2016). Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Frontiers in Plant Science, 7, 381. https://doi.org/10.3389/fpls.2016.00381.
El-Banna, M. F., Farag, N. B., Massoud, H. Y., & Kasem, M. M. (2023). Exogenous IBA stimulated adventitious root formation of Zanthoxylum beecheyanum K. Koch stem cutting: Histo-physiological and phytohormonal investigation. Plant Physiology and Biochemistry, 197, 107639.
El Malahi, S., Sbah, N., Zim, J., Ennami, M., Zakri, B., Mokhtari, W., Taimourya, H., Mokhtari, M., & Hassani, L. M. I. (2023). Enhancing rooting efficiency and nutrient uptake in Rosa damascena Mill. cuttings: insights into auxin and cutting type optimization. Plant Science Today. 1-13 https://doi.org/10.14719/pst.2585
Galvan-Ampudia, C. S., Cerutti, G., Legrand, J., Brunoud, G., Martin-Arevalillo, R., Azais, R., Bayle, V., Moussu, S., Wenzl, C., Jaillais, Y., & Vernoux, T. (2020). Temporal integration of auxin information for the regulation of patterning. Elife, 9, e55832. https://doi.org/10.7554/eLife.55832
Goel, A., Kaur, A., & Kumar, A. (2018). Biochemical and histological changes during in vitro rooting of microcuttings of Bacopa monnieri (L.) Wettst. Acta Physiologiae Plantarum, 40, 1-12. https://doi.org/10.1007/s11738-018-2641-8
González-Hernández, A. I., Scalschi, L., Troncho, P., García-Agustín, P., & Camanes, G. (2022). Putrescine biosynthetic pathways modulate root growth differently in tomato seedlings grown under different N sources. Journal of Plant Physiology, 268, 153560. https://doi.org/10.1016/j.jplph.2021.153560
Han, H., Zhang, S., & Sun, X. (2009). A review on the molecular mechanism of plants rooting modulated by auxin. African Journal of Biotechnology, 8(3), 348–353.
Hartman, H. T., Kester, D. E., Davies F. T., & Geneve, R. L. (2002). Plant propagation: Principles and practice. Prentice Hall, Englewood Cliffs, NJ, USA, pp. 880
Huxley, A. (Ed.), 1992. New RHS Dictionary of Gardening. Macmillan, ISBN 0-333-47494-5.
Ibrahim, R., & Debergh, P. C. (2001). Factors controlling high efficiency adventitious bud formation and plant regeneration from in vitro leaf explants of roses (Rosa hybrida L.). Scientia Horticulturae, 88(1), 41-57. https://doi.org/10.1 016/S0304-4238(00)00189-8.
Kasim N.E. & Rayya A. (2009). Effect of different collection times and some treatments on rooting and chemical in terminal constituents of bitter almond hardwood cutting. Journal of Agriculture and Biological Sciences, 5(2), 116-122.
Khamushi, M., Dehestani-Ardakani, M., Zarei, A., & Kamali Aliabad, K. (2019). An efficient protocol for micropropagation of old cypress of Abarkuh (Cupressus sempervirens var. horizontalis [Mill.]) under in vitro condition. Plant Cell, Tissue and Organ Culture (PCTOC), 138(3), 597-601. https://doi.org/10.1007/s11240-019-01645-z
Kibbler, H., Johnston, M. E., & Williams, R. R. (2004). Adventitious root formation in cuttings of Backhousia citriodora F. Muell: 1. Plant genotype, juvenility and characteristics of cuttings. Scientia Horticulturae, 102(1), 133-143. https://doi.org/10.1016/j.scienta.2003.12.012
Kumar, A. (1996). Studies on in vitro propagation, biochemistry and field evaluation of two economically important plants: Rosa damascene Mill. and Gladiolus spp. - Ph.D. Thesis. Kumaun University, Nainital.
Kumar, A., Sood, A., Palni, L. M. S., Palni, U. T., & Gupta, A. K. (2001). Micropropagation of Rosa damascene from selected bushes. Journal of Horticultural Science and Biotechnology, 76, 30-34.
Kordzadeh, S., & Sarikhani, H. (2021). Effect of different concentrations of indole butyric acid, putrescine and hydrogen peroxide on stem cuttings of the rootstock GF677 (Prunus amygdalus× Prunus persica) according to the cutting season. Revista Facultad Nacional de Agronomía Medellín, 74(2), 9571-9582.
Kusano, T., Berberich, T., Tateda, C., & Takahashi, Y. (2008) Polyamines: essential factors for growth and survival. Planta, 228, 367–381. https://doi.org/10.1007/s00425- 008-0772-7.
Liu, J. H., Wang, W., Wu, H., Gong, X., & Moriguchi, T. (2015). Polyamines function in stress tolerance: from synthesis to regulation. Frontiers in Plant Science, 6, 827. https://doi.org/ 10.3389/fpls.2015.00827.
Mirzaei, M., Sefidkon, F., Ahmadi, N., Shojaeiyan, A., & Hosseini, H. (2016). Damask rose (Rosa damascena Mill.) essential oil is affected by short-and long-term handling. Industrial Crops and Products, 79, 219-224. https://doi.org/10.1016/j.indcrop.2015.11.011
Misra, P., & Chakrabarty, D. (2009). Clonal propagation of Rosa clinophylla Thory. through axillary bud culture. Scientia Horticulturae, 119(2), 212-216.    https://doi.org/10.1 016/j.scienta.2008.07.028.
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497.
Nasri, F., Fadakar, A., Saba, M. K., & Yousefi, B. (2015). Study of indole butyric acid (IBA) effects on cutting rooting improving some of wild genotypes of damask roses (Rosa damascena Mill.). Journal of Agricultural Sciences, Belgrade, 60(3), 263-275. https://doi.org/10.2298/JAS1503263N
Nguyen, T. H. N., Tänzer, S., Rudeck, J., Winkelmann, T., & Debener, T. (2020). Genetic analysis of adventitious root formation in vivo and in vitro in a diversity panel of roses. Scientia Horticulturae, 266, 109277. https://doi.org/10.1016/j.scienta.2020.109277
Pang, X. M., Zhang, Z. Y., Wen, X. P., Ban, Y., & Moriguchi, T. (2007). Polyamines, all-purpose players in response to environment stresses in plants. Plant Stress, 1(2), 173-188.
Pati, P. K., Kaur, N., Sharma, M., & Ahuja, P. S. (2010). In vitro propagation of rose. Protocols for in vitro Propagation of Ornamental Plants, 163-176. https://doi.org/10.1007/978-1-60327-114-1_16.
Rasmussen, A., Hosseini, S. A., Hajirezaei, M. R., Druege, U., & Geelen, D. (2015). Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. Journal of Experimental Botany, 66(5), 1437-1452. https://doi.org/10.1093/jxb/eru499
Rugini, E., Jacoboni, A., & Luppino, M. (1993). Role of basal shoot darkening and exogenous putrescine treatments on in vitro rooting and on endogenous polyamine changes in difficult-to-root woody species. Scientia Horticulturae, 53(1-2), 63-72. https://doi.org/10.1016/0304-4238(93)90138-G
Rusanov, K., Kovacheva, N., Vosman, B., Zhang, L., Rajapakse, S., Atanassov, A., & Atanassov, I. (2005). Microsatellite analysis of Rosa damascena Mill. accessions reveals genetic similarity between genotypes used for rose oil production and old Damask rose varieties. Theoretical and Applied Genetics, 111, 804-809. https://doi.org/10.1007/s00122-005-2066-9
Salehi, H., & Khosh-Khui, M. (1997). Effects of explant length and diameter on in vitro shoot growth and proliferation rate of miniature roses. Journal of Horticultural Science, 72(5), 673-676. https://doi.org/10.1080/14620316.1997.11515558
Schilmiller, A. L., & Howe, G. A. (2005). Systemic signaling in the wound response. Current opinion in plant biology, 8(4), 369-377. https://doi.org/10.1016/j.pbi.2005.05.008
Štefančič, M., Štampar, F., Veberič, R., & Osterc, G. (2007). The levels of IAA, IAAsp and some phenolics in cherry rootstock ‘GiSelA 5’ leafy cuttings pretreated with IAA and IBA. Scientia Horticulturae, 112(4), 399-405. https://doi.org/10.1016/j.scienta.2007.01.004
Steffens, B., Wang, J., & Sauter, M. (2006). Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deep water rice. Planta, 223, 604-612. https://doi.org/10.1007/s00425-005-0111-1
Steffens, B., & Rasmussen, A. (2016). The physiology of adventitious roots. Plant Physiology, 170(2), 603-617. https://doi.org/10.1104/pp.15.01360.
Tchinda, N. D., Messi, H. J. C. M., Fotso, F., Nzweundji, G., Oumar, D., Dongmo, B., Sanonne, S., Agbor, G.A., & Ndoumou, D. O. (2013). Biochemical aspects of single-node cuttings of Ricinodendron heudelotii (Baill.) in relation with rooting. African Journal of Biotechnology, 12(10), 1049–1056.
Tonon, G., Kevers, C., & Gaspar, T. (2001). Changes in polyamines, auxins and peroxidase activity during in vitro rooting of Fraxinus angustifolia shoots: an auxin-independent rooting model. Tree Physiology, 21(10), 655-663. https://doi.org/10.1093/treephys/ 21.10.655.
Wu, X. H., Fan, M. Z., Li, X. F., Piao, X. C., Gao, R., & Lian, M. L. (2021). Involvement of putrescine, nitric oxide, and hydrogen peroxide in methyl jasmonate-induced ginsenoside synthesis in adventitious root cultures of Panax ginseng CA Meyer. Journal of Plant Growth Regulation, 40, 1440-1449. https://doi.org/10.1007/s00344-020-10199-w