Document Type : Original Article

Author

Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran

Abstract

Purpose: Lily is one of the most economically ornamental plants and tissue culture plays a vital role in accelerating mass propagation of lily. In lily tissue culture, the production of bigger bulblets is highly desirable. The objective of the present investigation is to examine the impact of gibberellin on the in vitro growth of lily bulblets, administered at two distinct time intervals. Research method: In the present investigation, various concentrations of gibberellins (0, 0.1, and 1 µM) were employed at two distinct time points: the commencement of the culture period and the fifth week of culture period. After 11 weeks the fresh weight of bulblets, the number of bulblets, the fresh weight of leaves, the fresh weight of roots and the fresh weight of scale explant were scored and analyzed. Findings: The application of 1 µM gibberellin during bulblet induction yielded noteworthy outcomes, including a substantial 91% increase in the fresh weight of the bulblets, a significant 38% augmentation in the fresh weight of the leaves, as well as a 40% increase in the fresh weight of the roots. Research limitations: The quantification of endogenous phytohormones in lily scale explants was deemed unfeasible. Originality/value: The development of lily bulblets experienced a notable enhancement while the medium was supplemented with gibberellin in bulblet induction stage.

Keywords

Main Subjects

Ahmad, A., Ali, H., Khan, H., Begam, A., Khan, S., Ali, S. S., Ahmad, N., Fazal, H., Ali, M., Hano, C., Ahmad, N. & Abbasi, B. H. (2020). Effect of gibberellic acid on production of biomass, polyphenolics and steviol glycosides in adventitious root cultures of Stevia rebaudiana (Bert.). Plants, 9(4), 420. https://doi.org/10.3390/plants9040420
Ahmed, J. U., Linda, I. J. & Majid, M. A. (2018). Royal FloraHolland: Strategic Supply Chain of Cut Flowers Business. In Royal FloraHolland: Strategic Supply Chain of Cut Flowers Business. SAGE Publications: Thousand Oaks, CA, USA, 1-15. https://doi.org/10.4135/9781526461919
Askari, N. & De Klerk, G. J. (2018). Negative hydrostatic pressure is an unnoticed but significant source of contamination in tissue culture. Acta Horticulturae, 1212, 85–87. https://doi.org/10.17660/actahortic.2018.1212.17
Askari, Naser, Aliniaeifard, S. & Visser, R. G. F. (2022). Low CO2 levels are detrimental for in vitro plantlets through disturbance of photosynthetic functionality and accumulation of reactive oxygen species. Horticulturae, 8(1), 44. https://doi.org/10.3390/horticulturae8010044
Askari, Naser & De Klerk, G. J. (2020). Elimination of epidermal wax from explants increases growth in tissue culture of lily. Scientia Horticulturae, 274, 109637. https://doi.org/10.1016/j.scienta.2020.109637
Askari, Naser & Visser, R. G. F. (2022). The role of scale explants in the growth of regenerating lily bulblets in vitro. Plant Cell, Tissue and Organ Culture, 149(3), 589–598. https://doi.org/10.1007/s11240-022-02328-y
Askari, Naser, Visser, R. G. F. & de Klerk, G. J. (2016). Advantageous effects of mild abiotic stresses in lily cultured in vitro. Propagation of Ornamental Plants, 16(4), 130-136.
Askari, Naser, Visser, R. G. F. & Klerk, G. De. (2018). Growth of lily bulblets in vitro, a review. International Journal of Horticultural Science and Technology, 5(2), 133–143. https://doi.org/10.22059/ijhst.2018.268870.263
Askari, Naser, Wang, Y. G. & de Klerk, G. J. (2014). In tissue culture of Lilium explants may become heavily contaminated by the standard initiation procedure. Propagation of Ornamental Plants, 14(2), 49–56.
Atif, M. J., Amin, B., Ghani, M. I., Ali, M., Liu, X., Zhang, Y. & Cheng, Z. (2021). Allium sativum L. (Garlic) bulb enlargement as influenced by differential combinations of photoperiod and temperature. Food Chemistry, 338. https://doi.org/10.1016/j.foodchem.2020.127991
Benschop, M., Kamenetsky, R., Le Nard, M., Okubo, H. & De Hertogh, A. (2010). The Global Flower Bulb Industry: Production, Utilization, Research. In Horticultural Reviews (pp. 1–115). https://doi.org/10.1002/9780470527238.ch1
Cai, Y., Tang, L., Chen, H., Li, Y., Liu, R. & Chen, J. (2022). Somatic embryogenesis in Rosa Chinensis cv. ‘Old Blush.’ Plant Cell, Tissue and Organ Culture, 149(3), 645–656. https://doi.org/10.1007/s11240-022-02299-0
Castro-Camba, R., Sánchez, C., Vidal, N. & Vielba, J. M. (2022). Plant development and crop yield: the role of gibberellins. Plants, 11, 19, 2650. https://doi.org/10.3390/plants11192650
da Costa, C. T., de Almeida, M. R., Ruedell, C. M., Schwambach, J., Maraschin, F. S. & Fett-Neto, A. G. (2013). When stress and development go hand in hand: Main hormonal controls of adventitious rooting in cuttings. In Frontiers in Plant Science (Vol. 4, Issue May). Frontiers Research Foundation. https://doi.org/10.3389/fpls.2013.00133
Dantu, P. K. & Bhojwani, S. S. (1995). In vitro corm formation and field evaluation of corm-derived plants of Gladiolus. Scientia Horticulturae, 61(1-2), 115-129. https://doi.org/10.1016/0304-4238(94)00722-R
Grassotti, A. & Gimelli, F. (2011). Bulb and cut flower production in the genus lilium: Current status and the future. Acta Horticulturae, 900, 21-36. https://doi.org/10.17660/actahortic.2011.900.1
He, J., Xin, P., Ma, X., Chu, J. & Wang, G. (2020). Gibberellin metabolism in flowering plants: an update and perspectives. Frontiers in Plant Science, 11, 533208. https://doi.org/10.3389/fpls.2020.00532
Hedden, P. & Sponsel, V. (2015). A century of gibberellin research. Journal of Plant Growth Regulation, 34(4), 740-760. https://doi.org/10.1007/s00344-015-9546-1
Huang, T., Zhang, H., Sheng, Q. & Zhu, Z. (2022). Morphological, Anatomical, Physiological and Biochemical Changes during Adventitious Roots Formation of Bougainvillea buttiana ‘Miss Manila.’ Horticulturae, 8(12). https://doi.org/10.3390/horticulturae8121156
Ilczuk, A., Winkelmann, T., Richartz, S., Witomska, M. & Serek, M. (2005). In vitro propagation of Hippeastrum × chmielii Chm. - Influence of flurprimidol and the culture in solid or liquid medium and in temporary immersion systems. Plant Cell, Tissue and Organ Culture, 83(3), 339–346. https://doi.org/10.1007/s11240-005-8812-5
Kumar, S., Kashyap, M. & Sharma, D. R. (2005). In vitro regeneration and bulblet growth from lily bulbscale explants as affected by retardants, sucrose and irradiance. Biologia Plantarum, 49(4), 629–632. https://doi.org/10.1007/s10535-005-0064-z
Langens-Gerrits, M, Lilien-Kipnis, H., Croes, T., Miller, W., Kollfiffel, C. & De Klerk, G. J. (1997). Bulb growth in lily regenerated in vitro. Acta Horticulturae, 430, 267–273. https://doi.org/10.17660/actahortic.1997.430.39
Langens-Gerrits, Merel, De Klerk, G. J. & Croes, A. (2003). Phase change in lily bulblets regenerated in vitro. Physiologia Plantarum, 119(4), 590–597.     https://doi.org/10.1046/j.1399-3054.2003.00214.x
Le Guen-Le Saos, F., Hourmant, A., Esnault, F. & Chauvin, J. E. (2002). In vitro bulb development in shallot (Allium cepa l. Aggregatum group): Effects of anti-gibberellins, sucrose and light. Annals of Botany, 89(4), 419–425. https://doi.org/10.1093/aob/mcf063
Li, W., Liu, S. W., Ma, J. J., Liu, H. M., Han, F. X., Li, Y. & Niu, S. H. (2020). Gibberellin signaling is required for far-red light-induced shoot elongation in pinus tabuliformis seedlings1. Plant Physiology, 182(1), 658–668. https://doi.org/10.1104/pp.19.00954
Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.     https://doi.org/10.1111/J.1399-3054.1962.TB08052.X
Ren, Z., Xu, Y., Lvy, X., Zhang, D., Gao, C., Lin, Y., Liu, Y., Wu, Y. & Xia, Y. (2021). Early sucrose degradation and the dominant sucrose cleavage pattern influence lycoris sprengeri bulblet regeneration in vitro. International Journal of Molecular Sciences, 22(21), 11890. https://doi.org/10.3390/ijms222111890
Shah, S. H., Islam, S., Mohammad, F. & Siddiqui, M. H. (2023). Gibberellic acid: a versatile regulator of plant growth, development and stress responses. Journal of Plant Growth Regulation, 42, 7352–7373. https://doi.org/10.1007/s00344-023-11035-7
Tang, N., Ju, X., Hu, Y., Jia, R. & Tang, D. (2020). Effects of temperature and plant growth regulators on the scale propagation of lilium davidii var. unicolor. HortScience, 55(6), 870–875. https://doi.org/10.21273/HORTSCI14916-20
Thakur, R., Sood, A., Nagar, P. K., Pandey, S., Sobti, R. C. & Ahuja, P. S. (2006). Regulation of growth of Lilium plantlets in liquid medium by application of paclobutrazol or ancymidol, for its amenability in a bioreactor system: Growth parameters. Plant Cell Reports, 25(5), 382–391. https://doi.org/10.1007/s00299-005-0094-1
Vreugdenhil, D. & Sergeeva, L. I. (1999). Gibberellins and tuberization in potato. Potato Research, 42(3–4), 471–481. https://doi.org/10.1007/BF02358163
Willy John. (2022). Importance of Plant Growth Hormones. Journal of Plant Biochemistry & Physiology, 10(3), 290. https://doi.org/0.35248/2329-9029.22.10.290
Xu, J., Li, Q., Li, Y., Yang, L., Zhang, Y. & Cai, Y. (2021). Effect of exogenous gibberellin, paclobutrazol, abscisic acid, and ethrel application on bulblet development in Lycoris radiata. Frontiers in Plant Science, 11, 615547. https://doi.org/10.3389/fpls.2020.615547
Youssef, N. M., Shaaban, S. A., Ghareeb, Z. F. & Taha, L. S. (2019). In vitro bulb formation of direct and indirect regeneration of Lilium orientalis cv. “Starfighter” plants. Bulletin of the National Research Centre, 43(1), 1-9. https://doi.org/10.1186/s42269-019-0246-z
Zdravković-Korać, S., Belić, M., Ćalić, D. & Milojević, J. (2023). Somatic embryogenesis in spinach-a review. Horticulturae, 9(9), 1048. https://doi.org/10.3390/horticulturae9091048
Zhu, Z. ., Qian, Y. ., Jin, J. B. & Zhou, Q. (2017). Physiology and biochemistry dynamics in Carpinus betulus during rooting culture. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 46, 43-49.