Document Type : Review Article

Authors

1 Department of Agricultural and Bio-Environmental Engineering Technology, Federal Polytechnic, Mubi-650231, Adamawa State, Nigeria

2 Department of Agricultural and Environmental Engineering, Modibbo Adama University, Yola- 640261, Adamawa State, Nigeria

Abstract

Purpose: Despite the worldwide rise in annual tomato production, approximately 15-50% of harvested tomatoes are lost each year, posing a significant challenge to global food security. This review seeks to assess the efficacy of biochemical treatments in preserving tomatoes to mitigate post-harvest losses. A machine-based search mapped articles on "Chitosan coating and tomato preservation," "Calcium chloride and tomato preservation," and "Potassium permanganate and tomato preservation" using Google Scholar. Seventy relevant articles published between 1995 and 2024 were included in the systematic literature review. Findings: Calcium chloride, Chitosan coating, and Potassium permanganate exhibit promise in enhancing tomato shelf life, yet their efficacy is contingent upon variables like tomato variety and storage conditions. Achieving a universally effective treatment proves challenging due to variations in study outcomes, highlighting the complexity of preserving tomatoes optimally. Limitations: The variability observed in reported outcomes poses significant challenges when it comes to discerning the most effective and optimal treatment. This inherent inconsistency in results not only complicates the identification of a universally applicable solution but also underscores the intricate nature of the factors influencing treatment effectiveness. Directions for Future Research: Future research should examine treatment combinations, consider responses to tomato cultivars, assess ecological impacts, implement safety protocols, and utilize advanced analytical techniques to refine tomato preservation methods.

Keywords

Main Subjects

Abdullahi, S., Mohammed Ibrahim, J., Muhammad El-hafeez, A., Bulus Danladi, B., & Abbas Muhammad, M. (2021). Assessment of the cost-returns and profitability patterns of tomato production in Yamaltu-Deba local government area of Gombe State, Nigeria. Journal of Economic Science Research, 4(3), 1–9. https://doi.org/10.30564/jesr.v4i3.3127
Adeola, E. H. (2020). Factors influencing post-harvest losses among vegetable farmers in Mbaitoli local government area in Imo State. Asian Journal of Agricultural and Horticultural Research, 7(1), 22–28. https://doi.org/10.9734/ajahr/2020/v7i130086
Akhtar, H. M. S., Shah, T. A., Hamed, Y. S., Abdin, M., Ullah, S., Shaukat, F., Abdullah, Z., & Saeed, M. T. (2024). Application of chitosan-based chickpea (Cicer arietinum L.) hull polysaccharides edible coating on cherry tomatoes preservation. EFood, 5(1), e125. https://doi.org/10.1002/efd2.125
Al-Obeed, R. S. (2012). Jujube post-harvest fruit quality and storagability in response to agro-chemicals preharvest application. African Journal of Agricultural Reseearch, 7(36), 5099–5107. https://doi.org/10.5897/ajar12.151
Ali, A., Xia, C., Ouattara, N. B., Mahmood, I., & Faisal, M. (2021). Economic and environmental consequences’ of postharvest loss across food supply chain in the developing countries. Journal of Cleaner Production, 323, 129146. https://doi.org/10.1016/j.jclepro.2021.129146
Álvarez-Hernández, M. H., Martínez-Hernández, G. B., Avalos-Belmontes, F., Castillo-Campohermoso, M. A., Contreras-Esquivel, J. C., & Artés-Hernández, F. (2019). Potassium permanganate-based ethylene scavengers for fresh horticultural produce as an active packaging. Food Engineering Reviews, 11(3), 159–183. https://doi.org/10.1007/s12393-019-09193-0
Arah, I. K., Ahorbo, G. K., Anku, E. K., Kumah, E. K., & Amaglo, H. (2016). Postharvest handling practices and treatment methods for tomato handlers in developing countries: a mini review. Advances in Agriculture, 2016. https://doi.org/10.1155/2016/6436945
Arthur, E., Oduro, I., & Kumah, P. (2015). Effect of maturity stage and postharvest calcium chloride treatment on the quality and storage life of tomatoes (Lycopersicon esculentum Mill). In Journal of Postharvest Technology, 3(3), 74-81.
Athmaselvi, K. A., Sumitha, P., & Revathy, B. (2013). Development of aloe vera based edible coating for tomato. International Agrophysics, 27(4), 369–375. https://doi.org/10.2478/intag-2013-0006
Bal, E. (2018). Extension of the postharvest life of nectarine using modified atmosphere packaging and potassium permanganate treatment. Turkish Journal of Agriculture - Food Science and Technology, 6(10), 1362–1369. https://doi.org/10.24925/turjaf.v6i10.1362-1369.1972
Betchem, G., Johnson, N. A. N., & Wang, Y. (2019). The application of chitosan in the control of post-harvest diseases: A review. Journal of Plant Diseases and Protection, 126, 495–507.
Canché-López, K. C., Toledo-López, V. M., Vargas y Vargas, M. de L., Chan-Matú, D. I., & Madera-Santana, T. J. (2023). Characterization of chitosan edible coatings made with natural extracts of Solanum lycopersicum and Moringa oleifera for preserving fresh pork tenderloin. Journal of Food Measurement and Characterization, 17(3), 2233–2246. https://doi.org/10.1007/s11694-022-01784-6
Chepngeno, J., Owino, W. O., Kinyuru, J., Nenguwo, N., & others. (2016). Effect of calcium chloride and hydrocooling on postharvest quality of selected vegetables. Journal of Food Research, 5(2), 23.
Coolong, T., Mishra, S., Barickman, C., & Sams, C. (2014). Impact of supplemental calcium chloride on yield, quality, nutrient status, and postharvest attributes of tomato. Journal of Plant Nutrition, 37(14), 2316–2330. https://doi.org/10.1080/01904167.2014.890222
Dandago, M. A., Kitinoja, L., & Abdullahi, N. (2021). Commodity system assessment on postharvest handling, storage and marketing of maize (Zea mays) in Nigeria, Rwanda and Punjab, India. Journal of Horticulture and Postharvest Research, 4(1), 51-62. https://doi.org/10.22077/jhpr.2020.3297.1136
Daundasekera, W. A. M., Liyanage, G. L. S. G., Wijerathne, R. Y., & Pieris, R. (2015). Preharvest calcium chloride application improves postharvest keeping quality of tomato (Lycopersicon esculentum Mill.). Ceylon Journal of Science (Biological Sciences), 44(1), 55-60. https://doi.org/10.4038/cjsbs.v44i1.7341
Demes, R., Satheesh, N., & Fanta, S. W. (2021). Effect of different concentrations of the gibberellic acid and calcium chloride dipping on quality and shelf-life of Kochoro variety tomato. Philippine Journal of Science, 150(1), 335–349. https://doi.org/10.56899/150.01.30
Dladla, S. S., & Workneh, T. S. (2023). Evaluation of the effects of different packaging materials on the quality attributes of the tomato fruit. Applied Sciences (Switzerland), 13(4), 407–416. https://doi.org/10.3390/app13042100
Dobrucka, R., Leonowicz, A., & Cierpiszewski, R. (2017). Preparation of ethylene scavenger based on KMNO4 to the extension of the storage time of tomatoes. Studia Oeconomica Posnaniensia, 5(7), 7–18. https://doi.org/10.18559/soep.2017.7.1
Duguma, H. T. (2022). Potential applications and limitations of edible coatings for maintaining tomato quality and shelf life. International Journal of Food Science and Technology, 57(3), 1353–1366. https://doi.org/10.1111/ijfs.15407
Farooq, A., Niaz, B., Saeed, F., Afzaal, M., Armghan Khalid, M., Raza, M. A., & Al Jbawi, E. (2023). Exploring the potential of aloe vera gel-based coating for shelf life extension and quality preservation of tomato. International Journal of Food Properties, 26(2), 2909–2923. https://doi.org/10.1080/10942912.2023.2263661
Firdous, N. (2021). Significance of edible coating in mitigating postharvest losses of tomatoes in Pakistan: a review. Journal of Horticulture and Postharvest Research, 4(Special Issue-Fresh-cut Products), 41-54. https://doi.org/10.22077/jhpr.2020.3469.1152
Gaikwad, K. K., Singh, S., & Negi, Y. S. (2020). Ethylene scavengers for active packaging of fresh food produce. Environmental Chemistry Letters, 18(2), 269–284. https://doi.org/10.1007/s10311-019-00938-1
Ghaouth, A. El, Ponnampalam, R., Castaigne, F., & Arul, J. (2019). Chitosan coating to extend the storage life of tomatoes. HortScience, 27(9), 1016–1018.      https://doi.org/10.21273/hortsci.27.9.1016
Hao, W. J., Nawi, I. H. M., & Idris, N. I. M. (2020). Effect of hot water treatment with calcium dips on postharvest quality of tomato. Malaysian Applied Biology, 49(4), 71–77. https://doi.org/10.55230/mabjournal.v49i4.1569
Islam Sakif, T., Dobriansky, A., Russell, K., & Islam, T. (2016). Does chitosan extend the shelf life of fruits? Advances in Bioscience and Biotechnology, 07(08), 337–342. https://doi.org/10.4236/abb.2016.78032
Jones, C. D., Fraisse, C. W., & Ozores-Hampton, M. (2012). Quantification of greenhouse gas emissions from open field-grown Florida tomato production. Agricultural Systems, 113, 64–72. https://doi.org/10.1016/j.agsy.2012.07.007
Kapsiya, J., Gungula, D. T., Tame, V. T., & Bukar, N. (2015). Effects of storage chemicals and packaging systems on physicochemical characteristics of tomato (Solanum lycopersicum L.) Fruits. AASCIT Journal of Bioscience, 1(3), 41-46.
Kitinoja, L. (2013). Innovative small-scale postharvest technologies for reducing losses in horticultural crops. Ethiopian Journal of Applied Science and Technology, 15(1), 9-15.
López–Gómez, A., Ros–Chumillas, M., Buendía-Moreno, L., & Martínez–Hernández, G. B. (2020). Active cardboard packaging with encapsulated essential oils for enhancing the shelf life of fruit and vegetables. Frontiers in Nutrition, 7, 1-22. https://doi.org/10.3389/fnut.2020.559978
Mansourbahmani, S., Ghareyazie, B., Kalatejari, S., Mohammadi, R. S., & Zarinnia, V. (2017). Effect of post-harvest UV-C irradiation and calcium chloride on enzymatic activity and decay of tomato (Lycopersicon esculentum L.) fruit during storage. Journal of Integrative Agriculture, 16(9), 2093-2100. https://doi.org/10.1016/S2095-3119(16)61569-1
Mansourbahmani, S., Ghareyazie, B., Zarinnia, V., Kalatejari, S., & Mohammadi, R. S. (2018). Study on the efficiency of ethylene scavengers on the maintenance of postharvest quality of tomato fruit. Journal of Food Measurement and Characterization, 12(2), 691-701. https://doi.org/10.1007/s11694-017-9682-3
Martínez-Blanco, J., Muñoz, P., Antón, A., & Rieradevall, J. (2011). Assessment of tomato Mediterranean production in open-field and standard multi-tunnel greenhouse, with compost or mineral fertilizers, from an agricultural and environmental standpoint. Journal of Cleaner Production, 19(9–10), 985–997. https://doi.org/10.1016/j.jclepro.2010.11.018
Mazumder, M. N. N., Misran, A., Ding, P., Wahab, P. E. M., & Mohamad, A. (2021). Effect of harvesting stages and calcium chloride application on postharvest quality of tomato fruits. Coatings, 11(12), 1–23. https://doi.org/10.3390/coatings11121445
Mior-Azmai, W. N. S., Abdul Latif, N. S., & Md Zain, N. (2019). Efficiency of edible coating chitosan and cinnamic acid to prolong the shelf life of tomatoes. Journal of Tropical Resources and Sustainable Science (JTRSS), 7(1), 47–52. https://doi.org/10.47253/jtrss.v7i1.509
Mishra, S., & Prakash, V. (2018). Biochemical changes in calcium chloride treated Hisar Arun (Local) and Kashi Vishesh (Hybrid) cultivars of tomato fruit. Current Agriculture Research Journal, 6(3), 395–406. https://doi.org/10.12944/carj.6.3.19
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine, 151(4), 264–269.
Muhammad, A., Dayisoylu, K. S., Khan, H., Khan, M. R., Khan, I., Hussain, F., Basit, A., Ali, M., Khan, S., & Idrees, M. (2023). An integrated approach of hypobaric pressures and potassium permanganate to maintain quality and biochemical changes in tomato fruits. Horticulturae, 9(1), 9. https://doi.org/10.3390/horticulturae9010009
Mujtaba, A., & Masud, T. (2014). Enhancing postharvest storage life of tomato (Lycopersicon esculentum Mill.) cv. Rio Grandi using calcium chloride. American-Eurasian Journal of Agricultural and Environmental Sciences, 14(2), 143-149. https://doi.org/10.5829/idosi.aejaes.2014.14.02.12269
Onwualu, A. P., & Olife, I. C. (2013). Towards a sustainable value chain approach to agricultural transformation in Nigeria: the imperative of endogenous agricultural machinery development. Journal of Agricultural Engineering and Technology, 21(1), 1-17.
Pagno, C. H., Castagna, A., Trivellini, A., Mensuali-Sodi, A., Ranieri, A., Ferreira, E. A., Rios, A. de O., & Flôres, S. H. (2018). The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. Journal of Food Processing and Preservation, 42(1), e13326. https://doi.org/10.1111/jfpp.13326
Parvin, N., Kader, M. A., Huque, R., Molla, M. E., & Khan, M. A. (2018). Extension of shelf-life of tomato using irradiated chitosan and its physical and biochemical characteristics. International Letters of Natural Sciences, 67, 16-23. https://doi.org/10.18052/www.scipress.com/ilns.67.16
Prakash, A., Chen, P. C., Pilling, R. L., Johnson, N., & Foley, D. (2007). 1% Calcium chloride treatment in combination with gamma irradiation improves microbial and physicochemical properties of diced tomatoes. Foodborne Pathogens and Disease, 4(1), 89–98. https://doi.org/10.1089/fpd.2006.0069
Ragab, M., Abou El-Yazied, A., Emam, M., & Haffez, M. (2019). Effect of chitosan and potassium permanganate treatments on quality and storability of cantaloupe fruits. Egyptian Journal of Agricultural Research, 97(1), 265–284. https://doi.org/10.21608/ejar.2019.68670
Raman, M., Raman, M., U, S. P., & Mathew, P. T. (2023). Effect of mushroom chitosan coating on the quality and storability of tomato (Solanum lycopersicum L.). Journal of Postharvest Technology, 2023(1), 133–144.
Ramírez-Guerra, H. E., Castillo-Yañez, F. J., Montaño-Cota, E. A., Ruíz-Cruz, S., Márquez-Ríos, E., Canizales-Rodríguez, D. F., Torres-Arreola, W., Montoya-Camacho, N., & Ocaño-Higuera, V. M. (2018). Protective effect of an edible tomato plant extract/chitosan coating on the quality and shelf life of sierra fish fillets. Journal of Chemistry, 2018. https://doi.org/10.1155/2018/2436045
Rayees, A. S., Maqsood, A. M., Shaeel, A. al-T., & Muneer, A. S. (2013). Chitosan as a novel edible coating for fresh fruits. Food Science and Technology Research, 19(2), 139–155.
Romanazzi, G., Feliziani, E., Baños, S. B., & Sivakumar, D. (2017). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57(3), 579–601. https://doi.org/10.1080/10408398.2014.900474
Salgado-Cruz, M. de la P., Salgado-Cruz, J., Garc\’\ia-Hernández, A. B., Calderón-Dom\’\inguez, G., Gómez-Viquez, H., Oliver-Espinoza, R., Fernández-Mart\’\inez, M. C., & Yáñez-Fernández, J. (2021). Chitosan as a coating for biocontrol in postharvest products: A bibliometric review. Membranes, 11(6), 421.
Sanches, A. G., da Silva, M. B., Moreira, E. G. S., dos Santos, E. X., Menezes, K. R. P., & Cordeiro, C. A. M. (2019). Ethylene absorber (KMnO4) in postharvest quality of pinha (Anona Squamosa L.). Emirates Journal of Food and Agriculture, 31(8), 605–612. https://doi.org/10.9755/EJFA.2019.V31.I8.1992
Sati, F., & Qubbaj, T. (2021). Effect of calcium chloride postharvest treatment in combination with plant natural substance coating on fruit quality and storability of tomato (Solanum lycopersicum) fruits during cold storage. Journal of Applied Botany and Food Quality, 94, 100-107. https://doi.org/10.5073/JABFQ.2021.094.012
Schreinemachers, P., Ambali, M., Mwambi, M., Olanipekun, C. I., Yegbemey, R. N., & Wopereis, M. (2022). The dynamics of Africa’s fruit and vegetable processing sectors. ReSAKSS Annual Trends and Outlook Report.
Semida, W. M., Emara, A. E., & Barakat, M. A. (2019). Improving quality attributes of tomato during cold storage by preharvest foliar application of calcium chloride and potassium thiosulfate. International Letters of Natural Sciences, 76, 98-110. https://doi.org/10.18052/www.scipress.com/ilns.76.98
Shalini, K. T., Satish Kumar, & Naveen Kumar. (2018). Effect of active packaging and refrigerated storage on quality attributes of kiwifruits (Actinidia deliciosa Chev) Standardization of postharvest treatments and active packaging conditions for retaining storage quality of pear cv. Bartlett View project. Journal of Pharmacognosy and Phytochemistry, 7(2), 1372-1377.
Shehata, S. A., Abdelrahman, S. Z., Megahed, M. M. A., Abdeldaym, E. A., El-Mogy, M. M., & Abdelgawad, K. F. (2021). Extending shelf life and maintaining quality of tomato fruit by calcium chloride, hydrogen peroxide, chitosan, and ozonated water. Horticulturae, 7(9), 309. https://doi.org/10.3390/horticulturae7090309
Shehu, K., Maishanu, A. M., & Salau, I. A. (2014). A Preliminary Study on Microbial Contamination of Leafy Vegetables in Sokoto Metropolis, Nigeria. Aceh International Journal of Science and Technology, 3(3), 140–144. https://doi.org/10.13170/aijst.3.3.1594
Silva, D. F. P., Salomão, L. C. C., Siqueira, D. L. de, Cecon, P. R., & Rocha, A. (2009). Potassium permanganate effects in postharvest conservation of the papaya cultivar Sunrise Golden. Pesquisa Agropecuária Brasileira, 44, 669–675.
Sohail, M., Ayub, M., Khalil, S. A., Zeb, A., Ullah, F., Afridi, S. R., & Ullah, R. (2015). Effect of calcium chloride treatment on post harvest quality of peach fruit during cold storage. International Food Research Journal, 22(6), 2225-2229.
Stratton, A. E., Finley, J. W., Gustafson, D. I., Mitcham, E. J., Myers, S. S., Naylor, R. L., Otten, J. J., & Palm, C. A. (2021). Mitigating sustainability tradeoffs as global fruit and vegetable systems expand to meet dietary recommendations. Environmental Research Letters, 16(5), 1-11. https://doi.org/10.1088/1748-9326/abe25a
Sucharitha, K. V., Beulah, A. M., & Ravikiran, K. (2018). Effect of chitosan coating on storage stability of tomatoes (Lycopersicon esculentum Mill). International Food Research Journal, 25(1), 93–99.
Tafi, E., Triunfo, M., Guarnieri, A., Ianniciello, D., Salvia, R., Scieuzo, C., Ranieri, A., Castagna, A., Lepuri, S., Hahn, T., Zibek, S., De Bonis, A., & Falabella, P. (2023). Preliminary investigation on the effect of insect-based chitosan on preservation of coated fresh cherry tomatoes. Scientific Reports, 13(1), 7030. https://doi.org/10.1038/s41598-023-33587-0
Tesfay, S. Z., & Magwaza, L. S. (2017). Evaluating the efficacy of moringa leaf extract, chitosan and carboxymethyl cellulose as edible coatings for enhancing quality and extending postharvest life of avocado (Persea americana Mill.) fruit. Food Packaging and Shelf Life, 11, 40–48. https://doi.org/10.1016/j.fpsl.2016.12.001
Tonna, A. A., Charles, O. A., & Afam, I. O. J. (2016). Effect of packaging and chemical treatment on storage life and physicochemical attributes of tomato (Lycopersicon esculentum Mill cv. Roma). African Journal of Biotechnology, 15(35), 1913-1919. https://doi.org/10.5897/ajb2012.8384
Vats, S., Bansal, R., Rana, N., Kumawat, S., Bhatt, V., Jadhav, P., Kale, V., Sathe, A., Sonah, H., Jugdaohsingh, R., Sharma, T. R., & Deshmukh, R. (2022). Unexplored nutritive potential of tomato to combat global malnutrition. Critical Reviews in Food Science and Nutrition, 62(4), 1003–1034. https://doi.org/10.1080/10408398.2020.1832954
Vermeiren, L., Devlieghere, F., Van Beest, M., De Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science and Technology, 10(3), 77–86. https://doi.org/10.1016/S0924-2244(99)00032-1
Wabali, V. C., & Esiri, A. (2021). Effect of potassium permanganate on colour and textural characteristics of tomatoes at ambient temperature storage. European Journal of Agriculture and Food Sciences, 3(2), 60–62. https://doi.org/10.24018/ejfood.2021.3.2.263
Wabali, V. C., Esiri, A., & Zitte, L. (2017). A sensory assessment of color and textural quality of refrigerated tomatoes preserved with different concentrations of potassium permanganate. Food Science and Nutrition, 5(3), 434–438. https://doi.org/10.1002/fsn3.410
Won, J. S., Lee, S. J., Park, H. H., Song, K. Bin, & Min, S. C. (2018). Edible coating using a chitosan-based colloid incorporating grapefruit seed extract for cherry tomato safety and preservation. Journal of Food Science, 83(1), 138–146. https://doi.org/10.1111/1750-3841.14002
Xing, K., Zhu, X., Peng, X., & Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 35(2), 569–588. https://doi.org/10.1007/s13593-014-0252-3
Zakriya, M., Hussain, A., Mahdi, A. A., Yasmeen, F., Kausar, T., Rehman, A., Yaqub, S., Fatima, P., Noreen, S., Kabir, K., Nisar, R., Gorsi, F. I., Fatima, H., & Korma, S. A. (2023). Effect of different types of ethylene scavengers used in different combinations, on the post-harvest quality and phytochemicals retention of tomatoes (Solanum lycopersicum L.). Chemical and Biological Technologies in Agriculture, 10(1), 90. https://doi.org/10.1186/s40538-023-00465-w