Document Type : Original Article

Authors

1 Department of Horticultural Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Purpose: The objective of the present study was to examine the impact of explant type and varying concentrations of 2,4-Dichlorophenoxyacetic acid and 6-Benzyladenine growth regulators on the San Pedro cactus callus morphological and biochemical characteristics. Research method: Four types of explants were used i.e. explants with areola, without areola, with truncated areola, and with central tissue. Additionally, five combinations of BA and 2,4-D, were tested (0 mg/L BA + 2 mg/L 2,4-D, 2 mg/L BA + 2 mg/L 2,4-D, 3 mg/L BA + 3 mg/L 2,4-D, 4 mg/L BA + 4 mg/L 2,4-D, 0 mg/L BA + 0 mg/L 2,4-D). Findings: The results indicated that callus formation induced in all treatments 6 days after inoculation. There were significant differences in growth parameters, including fresh weight, volume, moisture, tissue firmness, total phenols, total flavonoids and antioxidant activity of the callus (P < 0.01) and dry weight of callus (P < 0.05). Explants holding a segment of central tissue, yielded the least favorable results in most of experimental treatments, and the application of 2,4-D in the absence of BA had an inhibitory and toxic effect on the San Pedro cactus explants. Research limitations: No limitations were found. Originality/Value: Specifically, use of 2 mg/L BA + 2 mg/L 2,4-D and explants with areola resulted in callus with higher fresh weight, volume and total flavonoids, as well as good tissue integrity and firmness. The reported results are a valuable resource for future research related to cell tissue culture and the elicitation of secondary metabolites in Echinopsis spp.

Keywords

Main Subjects

Adki, V.S., Jadhav, J.P., & Bapat, V.A. (2012). Exploring the phytoremediation potential of cactus (Nopalea cochenillifera Salm. Dyck.) cell cultures for textile dye degradation. International Journal of Phytoremediation, 14, 554–569. https://doi.org/10.1080/15226514.2011.619226.
Adil, M., Ren, X., Kang, D., Luc, T., & Jeong, B. R. (2018). Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Molecular Biology Reports, 45(3), 1919-1927. https://doi.org/10.1007/s11033-018-4340-3.
Agte, V. V., Gokhale, M. K., Paknikar, K. M., & Cheplonkar, S. (1995). Assessment of pearl millet vs rice-based diets for bioavailability of four trace metals. Plant Foods for Human Nutrition, 48(2), 149-158. https://doi.org/10.1007/BF01088311.
Akkol, E. K., Orhan, I. E., & Yeşilada, E. (2012). Anticholinesterase and antioxidant effects of the ethanol extract, ethanol fractions and isolated flavonoids from Cistus laurifolius L. leaves. Food Chemistry, 131(2), 626-631. https://doi.org/10.1016/j.foodchem.2011.09.041
Amente. G. & Chimdessa. E. (2021). Control of browning in plant tissue culture: A review. Journal of Scientific Agriculture, 5, 67-71. https://doi.org/10.25081/jsa.2021.v5.7266.
Angulo-Bejarano, P. I., & Paredes-López, O. (2011). Development of a regeneration protocol through indirect organogenesis in prickly pear cactus (Opuntia ficus-Indica (L.) Mill). Scientia Horticulturae, 128(3), 283-288. https://doi.org/10.1016/j.scienta.2011.01.030.
Ashokhan, S., Othman, R., Abd Rahim M.H., Karsani, S.A., & Yaacob, J.S. (2020). Effect of plant growth regulators on coloured callus formation and accumulation of azadirachtin, an essential biopesticide in Azadirachta indica. Plants, 9(3), 352-369. https://doi.org/10.3390/plants9030352.
Ashokhan, S., Othman, R., Abd Rahim M.H., Karsani, S.A., & Yaacob, J.S. (2019). Analysis of bioactive pigments in coloured callus of Azadirachta indica for possible use as functional natural colourants. Pigment & Resin Technology, 48(2), 9–19. https://doi.org/10.1108/PRT-11-2017-0095.
Bano, A., Khattak, M., Basit, A., Alam, M., Shah, S., Ahmad, N., Gilani, S., Ullah, I., Anwar, S., & Mohamed, H. (2022). Callus induction, proliferation, enhanced secondary metabolites production and antioxidants activity of Salvia moorcroftiana L. as influenced by combinations of auxin, cytokinin and melatonin. Brazilian Archives of Biology and Technology, 65, 1-16. https://doi.org/10.1590/1678-4324-2022210200.
Bernabe-Antonio, A., Maldonado-Magana, A., Ramírez-Lopez, C.B., Salcedo-Perez, E., Meza-Contreras, J.C., Gonzalez-García, Y., Lopez-Dellamary Toral, F.A., & Cruz-Sosa, F. (2017). Establishment of callus and cell suspension cultures of Eysenhardtia polystachya (Ortega) and fungistatic activity of their extracts. South African Journal of Botany, 112, 40–47. https://doi.org/10.1016/j.sajb.2017.05.023.
Cabanas-Garcíam, E., Areche, C., Gomez-Aguirre, Y. A., Borquez, J., Munoz, R., Cruz-Sosa, F., & Perez-Molphe Balch, E. (2021). Biomass production and secondary metabolite identification in callus cultures of Coryphantha macromeris (Engelm.) Britton & Rose (Cactaceae), a traditional medicinal plant. South African Journal of Botany, 137, 1-9. https://doi.org/10.1016/j.sajb.2020.10.002.
Chaâbani, G., Tabart, J., Kevers, C., Dommes, J., Khan, M., Zaoui, S., Chebchoub, L., Lachaâl, M., & Karray-Bouraoui, N. (2015). Effects of 2,4-dichlorophenoxyacetic acid combined to 6-Benzylaminopurine on callus induction, total phenolic and ascorbic acid production, and antioxidant activities in leaf tissue cultures of Crataegus azarolus L. var. aronia. Acta Physiologiae Plantarum, 37(2), 16. https://doi.org/10.1007/s11738-014-1769-4.
Daffalla, H. M., Elsheikh, A. M., Ali, H. A., & Khalafalla, M. M. (2019). Callus maintenance and cell line selection of Grewia tenax. Journal of Herbs, Spices & Medicinal Plants, 25(3), 218-235. https://doi.org/10.1080/10496475.2019.1595256.
Daly, N. L. & Craik, D. J. (2011). Bioactive cystine knot proteins. Current Opinion in Chemical Biology 15(3), 362-368. https://doi.org/10.1016/j.cbpa.2011.02.008.
Dawa, K.K., El-denary, M.E., & Abo-elglagel, I.M. (2017). Callus formation and shoot regeneration as affected by plant growth regulators and explant types in three strawberry cultivars (Fragaria x ananassa Duch.). Journal of Plant Production, 8(5), 599-604. https://doi.org/10.21608/JPP.2017.40481.
Dias, M.I., Sousa, M.J., Alves, R.C., & Ferreira, I.C.F.R. (2016). Exploring plant tissue culture to improve the production of phenolic compounds: a review. Industrial Crops and Products, 82, 9–22. https://doi.org/10.1016/j.indcrop.2015.12.016.
Ebrahimzadeh, M. A., Navabi, S. M., Navabi, S. F., & Dehpour, A. A. (2011). Antioxidant activity of hydroalcholic extract of Ferula gummosa Boiss roots. European Review for Medical and Pharmacological Sciences, 15(6), 658-664.
El-Seedi, H. R., De Smet, P. A. G. M., Beck, O., Possnert, G., & Bruhn, J. G. J. (2005). Prehistoric peyote use: Alkaloid analysis and radiocarbon dating of archaeological specimens of Lophophora from Texas. Journal of Ethnopharmacology, 101, 238-242. https://doi.org/10.1016/j.jep.2005.04.022.
Fiedler, I., Santacruz-Ruvalcaba, F., & Portillo, L. (2022). Establishment of callus and cell suspension cultures of Ariocarpus retusus (Scheidweiler). Journal of the Professional Association for Cactus Development, 24, 1-18. https://doi.org/10.56890/jpacd.v24i.454.
Fu, Z., Xu, P., He, S., Teixeira da Silva, JA., & Tanaka, M. (2011). Dynamic changes in enzyme activities and phenolic content during in vitro rooting of tree peony (Paeonia suffruticosa Andr) plantlets. Maejo International Journal of Science and Technology, 5(2), 252–265.
Gonzalez-diaz, M.C., Perez-reyes, M.E., & Perez-molphe-blach, E. (2006). In vitro analysis of susceptibility to Agrobacterium rhizogenes in 65 species of Mexican cacti. Biologia Plantarun, 50(3), 331-337. https://doi.org/10.1007/s10535-006-0077-2.
Gourguillon, L., Rustenholz, C., Lobstein, A., & Gondet, L. (2018). Callus induction and establishment of cell suspension cultures of the halophyte Armeria maritima (Mill.) Willd. Scientia Horticulturae, 233, 407–411. https://doi.org/10.1016/j.scienta.2017.08.001.
Huang. G., Jin. Y., Zheng. J., Kang. W., Hu. H., Liu. Y., & Zou. T. (2016). Accumulation and distribution of copper in castor bean (Ricinus communis L.) callus cultures: in vitro. Plant Cell Tiss Organ Cult, 128, 177-186. https://doi.org/10.1007/s11240-016-1097-z.
Huang, L.C., Lee, Y.L., Huang, B.L., Kuo, C.I., & Shaw, J.F. (2002) High polyphenol oxidase activity and low titratable acidity in browning bamboo tissue culture. In Vitro Cellular & Developmental Biology-Plant, 38, 358–365. https://doi.org/10.1079/IVP2002298.
Hemmati, N., Cheniany, M., & Ganjeali, A. (2020). Effect of plant growth regulators and explants on callus induction and study of antioxidant potentials and phenolic metabolites in Salvia tebesana Bunge. Botanica Serbica, 44(2), 163-173. https://doi.org/10.2298/BOTSERB2002163H.
Hesami, M., Tohidfar, M., Alizadeh, M., & Daneshvar, M.H. (2018). Effects of sodium nitroprusside on callus browning of Ficus religiosa: an important medicinal plant. Journal of Forestry Research, 31, 789–796. https://doi.org/10.1007/s11676-018-0860-x.
Huh, Y.S., Lee, J.K., & Nam, S.Y. (2017). Effect of plant growth regulators and antioxidants on in vitro plant regeneration and callus induction from leaf explants of purple passion fruit (Passiflora edulis Sims). Journal of Plant Biotechnology, 44 (3), 335-342. https://doi.org/10.5010/JPB.2017.44.3.335.
Hussain, M.S., Fareed, S., Ansari, S., Rahman, M.A., Ahmad, I.Z., & Saeed, M. (2012). Current approaches toward production of secondary plant metabolites. Journal of Pharmacy and Bioallied Sciences, 4, 10–20. https://doi.org/10.4103/0975-7406.92725.
Jedinak, A., Faragó, J., Pšenáková, I., & Maliar, T. (2004). Approaches to flavonoid production in plant tissue cultures. Biologia Bratislava, 59(6),697-710.
Kaewubon, P., Hutadilok-Towatana, N., &Teixeira da Silva, J.A. (2015). Ultrastructural and biochemical alterations during browning of pigeon orchid (Dendrobium crumenatum Swartz) callus. Plant Cell, Tissue and Organ Culture (PCTOC), 121, 53–69. https://doi.org/10.1007/s11240-014-0678-y.
Kinoshita, K., Takizawa, T., Koyama, K., Takahashi, K., Kond,o N., & Yuasa, H. (1995). New triterpenes from Trichocereus pachanoi. Journal of Natural Products, 58(11), 1739–1744. https://doi.org/10.1021/np50125a016.
Llamoca-Zárate, R.M., Studart-Guimar~aes, C., Landsmann, J., & Campos, F.A.P. (1999). Establishment of callus and cell suspension cultures of Opuntia ficus-indica. Plant Cell, Tissue and Organ Culture, 58, 155–157. https://doi.org/10.1023/A:1006315729266.
Luczkiewicz, M., Kokotkiewicz. A., & Glod, D. (2014). Plant growth regulators affect biosynthesis and accumulation profile of isoflavone phytoestrogens in high-productive in vitro cultures of Genista tinctoria. Plant Cell, Tissue and Organ Culture, 118, 419–429. https://doi.org/10.1007/s11240-014-0494-4.
Mashayekhi, K., & Atashi, S. (2018). Guidance of Plant physiology tests (pre- and post-harvest examinations of plants). Gorgan: Agricultural Education Research Publications.
Martinez-Valverde, I., Periago, M.J., & Ros, G. (2000). Nutritional importance of phenolic compounds in the diet. Archivos Latinoamericanos de Nutricion, 50(1), 5–18.
Medeiros, L.A., Ribeiro, R., Gallo, L.A., Oliveira, E.T., & Demattè, M. (2006). Invitro propagation of Notocactus magnificus. Plant Cell, Tissue and Organ Culture, 84, 165-169. https://doi.org/10.1007/s11240-005-9014-x
Mengesha, B., Mekbib, F., & Abraha, E. (2016). In vitro screening of cactus (Opuntia ficus-indicia (L.) Mill) genotypes for drought tolerance. American Journal of Plant Sciences, 7, 1741-1758. https://doi.org/10.4236/ajps.2016.713163.
Mondragón-Jacobo, C., & Chessa, I. (2013). A global perspective on genetic resources of cactus pear; an asset for the future sustainability of semiarid lands. Acta Horticulturae, 995, 19-26. https://doi.org/10.17660/ActaHortic.2013.995.1
Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15(3), 473-497.    https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.
Nishchal, N., Mir, H., Rani, R., & Pal, A. K. (2018). Effect of antioxidants in controlling phenol exudation in micropropagation of Litchi cv. Purbi. Current Journal of Applied Science and Technology, 31(4), 1-7.‏ https://doi.org/10.1590/2447-536x.v27i1.2230
Panche, A.N., Diwan, A.D., & Chandra, S.R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41.
Pádua, M., Paiva, L., Silva, L., Livramento, K., Alves, E., & Castro, A. (2014). Morphological characteristics and cell viability of coffee plants calli. Ciência Rural, 44(4),660-665. https://doi.org/10.1590/S0103-84782014000400014.
Raj, P., Jakhar, M.L., Ahmad, S., Chahar, S., Kassim, Y. M., & Jat, H.R. (2020). A study on effects of antioxidants in micropropagation of Bael (Aegle marmelos L.). Journal of Pharmacognosy and Phytochemistry, 9(1), 1687-1690.
Rameshi, H. (2015). Bioreactors and optimal use of ecological potential of medicinal plants and plant secondary metabolites. The 10th Congress of Pioneers of Progress, 3292-3298. SID. https://sid.ir/paper/866083/fa
Reyes-Martínez, A., Antunes-Ricardo, M., Gutierrez-Uribe, J., & Santos-Díaz, M.d.S. (2019). Enhanced production and identification of antioxidants in in vitro cultures of the cacti Mammillaria candida and Turbinicarpus laui. Applied Microbiology and Biotechnology, 103, 2583–2595. https://doi.org/10.1007/s00253-019-09656-8.
Robbins, R. J. (2003). Phenolic acids in foods: an overview of analytical methodology. Journal of Agricultural and Food Chemistry, 51(10), 2866-2887.‏ https://doi.org/10.1021/jf026182t
Robles-Martıinez, M., Barba-de la Rosa, A. P., Gueraud, F., Negre-Salvayre, A., Rossigno, M., & Socorro Santos-Diaz, m. D. (2016). Establishment of callus and cell suspensions of wild and domesticated Opuntia species: study on their potential as a source of metabolite production. Plant Cell, Tissue and Organ Culture, 124, 181–189. https://doi.org/10.1007/s11240-015-0886-0.
Salmalian, M. (2017). Studying the role of growth stimulants in biomass and changes in the biochemical composition of stevia (Stevia rebaudiana Bertoni) callus in solid and liquid culture conditions. Gorgan: Gorgan University of Agricultural Sciences and Natural Resources.
Singleton, V. L. & Rossi, J. R. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungestic acid reagent. American Journal of Enology and Viticulture, 16 (3), 144-158.
Stahlschmidt, Z.R., DeNardo, D.F., Holland, J.N., Kotler, B.P., & Kruse-Peeples, M. (2011). Tolerance mechanisms in North American deserts: biological and societal approaches to climate change. Journal of Arid Environments, 75, 681–687. https://doi.org/10.1016/j.jaridenv.2011.03.006.
Sun, L., Zhang, J., Lu, X., Zhang, L., & Zhang, Y. (2011). Evaluation to the antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki L.) leaves. Food and Chemical Toxicology, 49(10), 2689-2696.‏ https://doi.org/10.1016/j.fct.2011.07.042.
Taghizadeh, M., & Dastjerdi, M. G. (2020). Inhibition of browning problem during the callogenesis of Spartium junceum L. Ornamental Horticulture, 27, 68-77.‏ https://doi.org/10.1590/2447-536X.v27i1.2230
Tan, S. H., Musa, R., Ariff, A., & Maziah, M. (2010). Effect of plant growth regulators on callus, cell suspension and cell line selection for flavonoid production from pegaga (Centella asiatica L. urban). American Journal of Biochemistry and Biotechnology, 6, 284–299. https://doi.org/10.3844/ajbbsp.2010.284.299.
Tang, W. & Newton, R.J. (2004) Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.). Plant Science, 167, 621–628. https://doi.org/10.1016/j.plantsci.2004.05.024.
Teodora, V. I., Nicoleta, L. A., & Stefania, S. A. (2015). Study on the regenerative capacity and organogenic of Echinopsis (Zucc.) chamaecereus f. Lutea explants, in the presence of 2,4-Dichlorophenoxyacetic acid (2,4-D) in culture medium. Analele Universitaţii din Oradea, Fascicula Protecţia Mediului, 25, 133-140.
Vidican, T. I., Cachita-Cosma, D., & Romocea, J. E. (2009). The initiation of Echinocactus mihanovichii, Echinopsis chamaecereus, f. lutea and Aylostera heliosa vitrocultures. Studia Universitatis Vasile Goldis, Seria Stiintele Vietii, 19(2), 351-357.
Wang, J., Li, J.-L., Li, J., Li, J.-X., Liu, S.-J., Huang, L.-Q., & Gao, W.-Y. (2017). Production of active compounds in medicinal plants: from plant tissue culture to biosynthesis. Chinese Herbal Medicines, 9, 115–125. https://doi.org/10.1016/S1674-6384(17)60085-6.
Wickremesinhe, E. R., & Arteea, R. N. (1993). Taxus callus cultures: initiation, growth optimization, characterization and taxol production. Plant Cell, Tissue and Organ Culture, 35, 181-193.‏ https://doi.org/10.1007/BF00032968
Wongsen, W., Bodhipadma, K., Noichinda, S., & Leung, D. W. M. (2015). Influence of different 2,4-D concentrations on antioxidant contents and activities in sweet basil leaf-derived callus during proliferation. International Food Research Journal, 22(2), 638-643.
Young Choa, H., Young Sona, S., Soon Rheea, H., Sung-Yong, H., Yoonb Carolyn, W. T., Parsonsc Jong, L., & Parka M. (2008). Synergistic effects of sequential treatment with methyl jasmonate, salicylic acid and yeast extract on benzophenanthridine alkaloid accumulation and protein expression in Eschscholtzia californica suspension cultures. Journal of Biotechnology, 135(1), 117–122. https://doi.org/10.1016/j.jbiotec.2008.02.020.
Zhou, F., Wang, Z., Shi, L., Niu, J., Shang, W., He, D., & He, S. (2016). Effects of different medium composition and exogenous hormones on browning of tree peony (Paeonia suffruticosa Andr.) callus in tissue culture. Flower Research Journal, 24, 96-102. https://doi.org/10.11623/frj.2016.24.2.03.