Document Type : Original Article

Author

Faculty of Science, Lampang Rajabhat University, 52100, Lampang, Thailand

Abstract

Purpose: Sawdust, a by-product of wood workplaces, poses environmental contamination and reduces workspace efficiency. This research aimed at recycling sawdust from rain tree by incorporating its extracts into gelatin films to create active films with antifungal properties against Aspergillus flavus. Research method: Sawdust was extracted by microwave with various solvents and electrical powers. The extract (0, 0.25, 0.5, 1, and 2%) were then tested for A. flavus inhibition. The extract was also incorporated with gelatin for making wrapped films and tested for inhibition potential on garlic inoculated with A. flavus. Findings: The optimal microwave extraction condition utilized a solvent mixture comprising distilled water and 95% ethanol in a 1:1 v/v ratio, applying 100 watts of electrical power for 30 seconds, repeated 5 times. This method yielded 23.26 mg/g of tannin. Furthermore, the 2% concentration of the extract significantly inhibited both mycelium growth and spore germination of A. flavus (P<0.05) when tested on a petri dish. Additionally, incorporating 2% of the crude extract into gelatin film resulted in the most favorable outcome. This treatment demonstrated the capability to prolong the shelf life of wounded-inoculated garlic for more than 12 days. Research limitations: No limitations were found. Originality/Value: Sawdust originating from a rain tree can be recycled biodegrable actine gelatin films against A. flavus, a field-bomepathogen in garlic.

Keywords

Main Subjects

Amerian, M., Khoramivafa, M., Palangi, A., Gohari, G., & Ntatsi, G. (2024). The effect of nitrogen and selenium on some phytochemical characteristics and allicin of garlic leaf. Journal of Horticulture and Postharvest Research, 7(Special Issue - Postharvest Technologies), 77-92. https://doi.org 10.22077/jhpr.2024.7162.1354
Antony, A., & Farid, M. (2022). Effect of temperatures on polyphenols during extraction. Applied Sciences, 12(4), 1-14. https://doi.org/10.3390/app12042107
Ayed, C., Mezghani, N., Rhimi, A., & AL Mohandes Dridi, B. (2019). Morphological evaluation of Tunisian garlic (Allium sativum L.) landraces for growth and yield traits. Journal of Horticulture and Postharvest Research, 2(Issue 1), 43-52. https://doi.org/10.22077/jhpr.2018.1838.1033
Bagade, S. B., & Patil, M. (2021). Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A Review. Critical Reviews in Analytical Chemistry, 51(2), 138-149. https://doi.org/10.1080/10408347.2019.1686966
Boonkorn, P., Chuajedton, A., & Karuehanon, W. (2020). The crude tannin extraction from wood scrap wastes for prolonging the shelf life of litchi fruits. International Journal of GEOMATE, 18(67), 208-213. https://doi.org/10.21660/2020.67.5562
Carvalho, R. S., Carollo, C. A., de Magalhães, J. C., Palumbo, J. M. C., Boaretto, A. G., Nunes e Sá, I. C.,  Ferraz, A. C., Lima, W. G., de Siqueira, J. M., & Ferreira, J. M. S. (2018). Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (mart. Et. Schr.) Pilger roots: Mechanisms of action and synergism with tannin and gallic acid. South African Journal of Botany, 114, 181-187. https://doi.org/10.1016/j.sajb.2017.11.010
Chen, H., Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., Pan, Y., Sun, J., & Han, W. (2019). Application of protein-based films and coatings for food packaging: A review. Polymers11(12), 1-32. https://doi.org/10.3390/polym11122039
Das, A. K., Islamb, Md. N., Faruk, Md. O., Ashaduzzaman, Md., & Dungani, R. (2020). Review on   tannins: Extraction processes, applications and possibilities. South African Journal of Botany, 135, 58-70. https://doi.org/10.1016/j.sajb.2020.08.008
Elgailani, I. E. H., & Ishak, C. Y. (2016). Methods for extraction and characterization of tannins from some acacia species of Sudan. Pakistan Journal of Analytical and Environmental Chemistry, 17(1), 43-49. http://dx.doi.org/10.21743/pjaec/2016.06.007
Etxabide, A., Leceta, I., Cabezudo, S. Guerrero, P., & de la Caba, K. (2016). Sustainable fish gelatin films: From food processing waste to compost. ACS Sustainable Chemistry and Engineering, 4(9), 4626-4634. https://doi.org/10.1021/acssuschemeng.6b00750
Etxabide, A., Yang, Y., Mate, J. I., de la Caba, K., & Kilmartin, P. A. (2022). Developing active and intelligent films through the incorporation of grape skin and seed tannin extracts into gelatin. Food Packaging and Shelf Life, 33, 1-12. https://doi.org/10.1016/j.fpsl.2022.100896
Hanani, Z. A. N., Yee, F. C., & Nor-Khaizura, M. A. R. (2019). Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocolloids, 89, 253-259. https://doi.org/10.1016/j.foodhyd.2018.10.007
Hu, X. G., Liu, L., Hu, K., Yang, X. L. & Wang, G. X. (2013). In Vitro screening of fungicidal chemicals for antifungal activity against Saprolegnia. Journal of the World Aquaculture Society, 44, 528-535. https://doi.org/10.1111/jwas.12052
Jirukkakul, N. (2022). Physical and antioxidant properties of gelatine film added with sesame, rice bran, and coconut oil. International Food Research Journal, 29(5), 1020-1031. https://doi.org/10.47836/ifrj.29.5.05
Kayahan, S., & Saloglu, D. (2021). Microwave-assisted extraction of antioxidant phenolic compounds from artichoke (Cynara scolymus L. cv Bayrampasa): optimisation and kinetic modeling. International Food Research Journal, 28(4), 704-715. http://dx.doi.org/10.47836/ifrj.28.4.07
Masiello, M., Somma, S., Ghionna, V., Logrieco, A. F. & Moretti, A. (2019). In Vitro and in field response of different fungicides against Aspergillus flavus and Fusarium species causing ear rot disease of maize. Toxins, 11(11), 1-18. http://dx.doi.org/10.3390/toxins11010011
Moosophin, K., Wetthaisong, T., Seeratchakot, L., & Kokluecha, W. (2010). Tannin extraction from mangosteen peel for protein precipitation in wine. KKU Research Journal, 15(5), 377-385.
Moradinezhad, F., & Ranjbar, A. (2023). Advances in postharvest diseases management of fruits and vegetables: A review. Horticulturae, 9(10), 1099. https://doi.org/10.3390/horticulturae9101099
Prasad, R. N.,  Viswanathan, S., Devi J. R., Nayak, V., Swetha, V. C.,  Archana, B. R., Parathasarathy, N., & Rajkumar, J. (2008). Preliminary phytochemical screening and antimicrobial activity of Samanea saman. Journal of Medicinal Plants Research, 2(10), 268-270. https://doi.org/10.5897/JMPR.9001040
Peña, C., de la Caba, K., Eceiza, A., Ruseckaite, R., & Mondragon, I. (2010). Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology, 101(17), 6836-6842. https://doi.org/10.1016/j.biortech.2010.03.112
Said, N. S., & Sarbon, N. M. (2022). Physical and mechanical characteristics of gelatin-based films as a potential food packaging material: A Review. Membranes, 12(5), 442. https://doi.org/10.3390/membranes12050442
Ukoha, P. O., Cemaluk, E. A. C., Nnamdi, O. L., & Madus E. P. (2011). Tannins and other phytochemical of the Samanaea saman pods and their antimicrobial activities. African Journal of Pure and Applied Chemistry, 5(8), 237-244. https://dx.doi.org/10.2139/ssrn.3965366
Valdés, A., Garcia-Serna, E., Martínez-Abad, A., Vilaplana, F., Jimenez, A., & Garrigós, M. C. (2020). Gelatin-based antimicrobial films incorporating pomegranate (Punica granatum L.) seed juice by-product. Molecules, 25(1), 1-20. https://doi.org/10.3390/molecules25010166
Vinodhini, S., & Rajeswari V. D. (2018). Review on ethnomedical uses, pharmacological activity and phytochemical constituents of Samanea saman (jacq.) Merr. rain tree. Pharmacognosy Journal, 10(2), 202-209. https://doi.org/10.5530/pj.2018.2.35
Wang, K., Wang, W. H., Zhang, Y., & Liu, A. J. (2017). Impact of tannin on the properties of gelatin edible film. Modern Food Science and Technology, 33(3), 251-256. http://doi.org/10.13982/j.mfst.1673-9078.2017.3.038