Document Type : Original Article

Authors

1 Department of Food Technology, PIAS, Parul University, Vadodara, Gujarat, India

2 Department of Food Technology, PIT, Parul University, Vadodara, Gujarat, India

Abstract

Purpose: This study examined the influence of various storage conditions on Thompson seedless (Vitis vinifera) grapes quality. Research method: Grapes were stored under four conditions: control (room temperature i.e., 20-22°C, no SO2), T1 with SO2 sheets at room temperature i.e., 20-22°C, T2 with SO2 sheets in cold storage at 1°C and T3 without SO2 sheets in cold storage at 1°C. Changes in acidity, total soluble solids (TSS), total anthocyanin content, total phenols, sugars (glucose and fructose), trans-resveratrol, decay %, weight loss % and antioxidant activity were monitored over 60 days. Findings: The findings revealed a synergistic effect between SO2 and cold storage. Grapes stored with both SO2 sheets and cold storage (T1) exhibited the slowest decline in anthocyanin, phenols and antioxidant activity of 211.06 mg/L, 2102.39 mg/L and 7.19 mM DPPH, respectively after 60 days. T1 grapes found to have slower reduction in sugars and trans-resveratrol concentration i.e., 15.47 to 15.37 g/100mL and 695 to 516 µg/g, respectively compared to control samples 15.47 to 14.81 g/100mL and 695 to 500 µg/g, respectively. Research limitations: The study focused solely on storage conditions of Thompson seedless variety grapes, limiting the generalizability of the findings to different grape varieties and maturity levels. Originality/value: These results highlighted the importance of proper storage techniques, particularly the combined use of SO2 and cold storage, for maintaining grape quality and extending shelf life.

Keywords

Main Subjects

Ahmadi Soleimanie, S. & Vafaee, Y. (2023). Storability and postharvest quality of five Iranian grape cultivars during cold storage. Plant Physiology Reports, 28, 320–331. https://doi.org/10.1007/s40502-023-00723-x
Ahmed, S., Roberto, S. R., Domingues, A. R., Shahab, M., Junior, O. J., Sumida, C. H., & De Souza, R. T. (2018). Effects of different sulfur dioxide pads on Botrytis mold in ‘Italia’ table grapes under cold storage. Horticulturae, 4(4), 29. https://doi.org/10.3390/horticulturae4040029
Albalasmeh, A. A., Berhe, A. A., & Ghezzehei, T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97(2), 253–261. https://doi.org/10.1016/j.carbpol.2013.04.072
Ali, A., Xia, C., Ouattara, N., Mahmood, I., & Faisal, M. (2021). Economic and environmental consequences’ of postharvest loss across food supply Chain in the developing countries. Journal of Cleaner Production, 323, 129146. https://doi.org/10.1016/j.jclepro.2021.129146
Antoniewicz, J., Kochman, J., Jakubczyk, K., & Janda-Milczarek, K. (2021). The influence of time and storage conditions on the antioxidant potential and total phenolic content in homemade grape vinegars. Molecules, 26(24):7616. https://doi.org/10.3390/molecules26247616
Apeda (2021). Procedures for export of fresh table grapes to the european union. Retrieved from APEDA: https://apeda.gov.in/apedawebsite/Announcements/procedure_for_export_of_grapes_2022.pdf
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Brizzolara, S., Manganaris, G. A., Fotopoulos, V., Watkins, C. B., & Tonutti, P. (2020). Primary metabolism in fresh fruits during storage. Frontiers in Plant Science, 11, 509561. https://doi.org/10.3389/fpls.2020.00080
Bunea, C. I., Pop, N., Babeş, A. C., Dulf, F. V., & Bunea, A. (2012). Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chemistry Central Journal, 6, 66. https://doi.org/10.1186/1752-153X-6-66
Camont, L., Cottart, C., Rhayem, Y., Nivet-Antoine, V., Djelidi, R., Collin, F., Beaudeux, J., & Bonnefont‐Rousselot, D. (2009). Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions. Analytica Chimica Acta, 634(1), 121–128. https://doi.org/10.1016/j.aca.2008.12.003
Chaves, A., & Zaritzky, N. (2018). Cooling and freezing of fruits and fruit products. Fruit Preservation: Novel and Conventional Technologies, 127-180.
Chervin, C., Aked, J., & Crisosto, C. H. (2012). “Grapes.” Crop Post-Harvest: Science and Technology, First Edition. 187-211.
de Aguiar, A. C., Higuchi, M. T., Yamashita, F. & Roberto, S. R. (2023). SO2-generating pads and packaging materials for postharvest conservation of table grapes: a review. Horticulturae, 9(6), 724. https://doi.org/10.3390/horticulturae9060724
Deng, Y., Wu, Y. & Li, Y. (2005). Effects of high O2 levels on post-harvest quality and shelf life of table grapes during long-term storage. European Food Research and Technology, 221, 392–397. https://doi.org/10.1007/s00217-005-1186-4
Elatafi, E., Elshahat, A., Xue, Y., Shaonan, L., Suwen, L., Tianyu, D., & Fang, J. (2023). Effects of different storage temperatures and methyl jasmonate on grape quality and antioxidant activity. Horticulturae, 9(12), 1282. https://doi.org/10.3390/horticulturae9121282
Lakso, A. N. & Kliewer, W. M. (1975). The influence of temperature on malic acid metabolism in grape berries: i. enzyme responses, Plant Physiology, 56(3), 370–372. https://doi.org/10.1104/pp.56.3.370
Leng, F., Wang, C., Sun, L., Li, P., Cao, J., Wang, Y., Zhang, C., & Sun, C. (2022). Effects of different treatments on physicochemical characteristics of ‘kyoho’ grapes during storage at low temperature. Horticulturae, 8(2), 94. https://doi.org/10.3390/horticulturae8020094
Lichter, A., Zutahy, Y., Kaplunov, T., & Lurie, S. (2008). Evaluation of table grape storage in boxes with sulfur dioxide-releasing pads with either an internal plastic liner or external wrap. HortTechnology, 18(2), 206-214. https://doi.org/10.21273/HORTTECH.18.2.206
Mirfatah, S. M. M., Rasouli, M., Gholami, M., & Mirzakhani, A. (2024). Phenotypic diversity of some Iranian grape cultivars and genotypes (Vitis vinifera L.) using morpho-phenological, bunch and berry traits. Journal of Horticulture and Postharvest Research, 7(2), 115-140. https://doi.org/10.22077/jhpr.2024.7165.1355
Mohamed, Z., AbdLatif, I., & Abdullah, A. M. (2011). Economic importance of tropical and subtropical fruits. In Postharvest biology and technology of tropical and subtropical fruits (pp. 1-20). Woodhead Publishing. https://doi.org/10.1533/9780857093622.1
Moradinezhad, F. & Ranjbar, A. (2023). Advances in postharvest diseases management of fruits and vegetables: a review. Horticulturae, 9(10), 1099. https://doi.org/10.3390/horticulturae9101099
Muche, B. M., Speers, R. A., & Rupasinghe, H. P. V. (2018). Storage temperature impacts on anthocyanins degradation, color changes and haze development in juice of "Merlot" and "Ruby" grapes (Vitis vinifera). Frontiers in Nutrition, 5, 100. https://doi.org/10.3389/fnut.2018.00100
Nile, S. H., Kim, S. H., Ko, E. Y., & Park, S. W. (2013). Polyphenolic contents and antioxidant properties of different grape (V. vinifera, V. labrusca, and V. hybrid) cultivars. BioMed Research International, 2013, 718065. https://doi.org/10.1155/2013/718065
Palou, L., Serrano, M., Martínez-Romero, D., & Valero, D. (2010). New approaches for postharvest quality retention of table grapes. Fresh Produce, 4(1), 103-110.
Pastrana-Bonilla, E., Akoh, C. C. & Cerquera, N. E. (2017). Identification and quantification of anthocyanins in muscadine grapes by HPLC and HPLC-MS. ARPN Journal of Engineering and Applied Sciences, 12(2), 626-631.
Sanchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1999). Free radical scavenging capacity of selected red, rose and white wines. Journal of the Science of Food and Agriculture, 79, 1301-1304.
Vlassi, E., Vlachos, P. & Kornaros, M. (2018). Effect of ozonation on table grapes preservation in cold storage. Journal of Food Science and Technology, 55, 2031–2038. https://doi.org/10.1007/s13197-018-3117-y
Way, M. L., Jones, J. E., Nichols, D. S., Dambergs, R. G., & Swarts, N. D. (2020). A comparison of laboratory analysis methods for total phenolic content of cider. Beverages, 6(3), 55. https://doi.org/10.3390/beverages6030055
Yan, H. K., Ma, S., Lu, X., Zhang, C. C., Ma, L., Li, K., Wei, Y. C., Gong, M. S., & Li, S. (2022). Response of wine grape quality to rainfall, temperature, and soil properties in hexi corridor. HortScience, 57(12), 1593-1599. https://doi.org/10.21273/HORTSCI16845-22
Zhan, Z., Zhang, Y., Geng, K., Xue, X., Deloire, A., Li, D., & Wang, Z. (2023). Effects of vine water status on malate metabolism and γ-aminobutyric acid (GABA) pathway-related amino acids in marselan (Vitis vinifera L.) grape berries. Foods, 12(23), 4191. https://doi.org/10.3390/foods12234191
Zheng, W., Alim, A., Bai, Y., Feng, Z., Zhang, J., Xia, N., & Ding, Z. (2021). Effect of postharvest dehydration on the microstructure and anthocyanin content of grapes. Horticulture, Environment, and Biotechnology, 62, 423–434. https://doi.org/10.1007/s13580-020-00331-w
Zhong, H., Yadav, V., Wen, Z., Zhou, X., Wang, M., Han, S., Pan, M., Zhang, C., Zhang, F., & Wu, X. (2023). Comprehensive metabolomics-based analysis of sugar composition and content in berries of 18 grape varieties. Frontiers in Plant Science, 14, 1200071. https://doi.org/10.3389/fpls.2023.1200071
Zhou, Y., Massonnet, M., Sanjak, J. S., Cantu, D., & Gaut, B. S. (2017). Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proceedings of the National Academy of Sciences, 114(44), 11715-11720. https://doi.org/10.1073/pnas.1709257114