Adish, M., Fekri, M., & Hokmabadi, H. (2010). Response of Badami-Zarand pistachio rootstock to salinity stress. Journal of Nuts, 1(01), 1-11.
Azarmi-Atajan, F., & Sayyari-Zohan, M. H. (2022). Effect of phosphate solubilizing bacteria and triple superphosphate on the growth, physiological parameters and phosphorus uptake of pistachio seedlings.
Journal of Horticulture and Postharvest Research,
5(1), 69-78.
https://doi.org/10.22077/jhpr.2022.4917.1260
Azarmi-Atajan, F., Sayyari-Zohan, M. H., & Mirzaei, A. (2023). Evaluation of the growth and status of some nutrients in pistachio seedlings treated with phosphorus under different levels of irrigation water salinity.
Journal of Horticulture and Postharvest Research,
6(3), 261-270.
https://doi.org/10.22077/jhpr.2023.6271.1314
Barnett, J., & Mielke, E.A. (1981) Alternate bearing: A reevaluation. Pecan South 8, 20-30.
Bi, A., Fan, J., Hu, Z., Wang, G., Amombo, E., Fu, J., & Hu, T. (2016) Differential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat and the combined stresses.
Frontiers in Plant Sciences, 7.
https://doi.org/10.3389/fpls.2016.00453
Binzel, M.I., Hess, F.D., Bressa, R.A., & Hasegawa, P.M. (1988). Intracellular compartmentation of ions in salt adapted tobacco cells.
Plant Physiology, 86, 607–614.
https://doi.org/10.1104/pp.86.2.607
Brown, P. H., Weinbaum, S. A., & Picchioni, G. A. (1995). Alternate bearing influences annual nutrient consumption and the total nutrient content of mature pistachio trees. Trees, 9(3), 158-164. https://doi.org/10.1007/BF02418205
Chaitanya, K.V., Sundar, D., Masilamani, S., & Ramachandra, R.A. (2002). Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regulations, 36, 175–180. https://doi.org/10.1023/A:1015092628374
Chaitanya, K.V., Sundar, D., & Ramachandra, R.A. (2001). Mulberry leaf metabolism under high temperature stress. Biologia Plantarum, 44, 379–384. DOI: 10.1023/A:1012446811036
Chalanika, De., Silva, H.C., & Asaeda, T. (2017). Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes.
Journal of Plant Interactions, 12(1), 228-236.
https://doi.org/10.1080/17429145.2017.1322153
Chapman, H.D., & Pratt, P.F. (1982). Methods of Analysis for Soils, Plants and Water. – Chapman Publisher, Riverside, CA, USA.
Crane, J.C., & Iwakiri, B.T. (1985). Vegetative and reproductive dominance in pistachio. HortScience 20,1092–1093.
Crane, J.C. (1986). Pistachio. In: S.P. Monselise (ed.), Handbook of Fruit Set and Development. pp. 391–416. CRC Press, Boca Raton, FL.
El-Mardi, M. O., Pillay, A. E., Williams, J. R., Bakheit, C. S., Hassan, S. M., Al-Hadabbi, M., & Al-Hamdi, A. (2005). Influence of alternate bearing on leaf and fruit mineral composition at different developmental stages of date palm fruits. Journal of Agricultural and Marine Sciences [JAMS], 10(1), 5-12.
Eskandari Torbaghan, M. (2023). Adaptability study of commercial pistachio cultivars in seven regions of Khorasan-Razavi province, Iran.
Journal of Horticulture and Postharvest Research,
6(2), 145-156.
https://doi.org/10.22077/jhpr.2023.5483.1283
Ferguson, L., & Kallsen, C.E. (2016) The pistachio tree: physiology and botany. In: Ferguson L, Haviland DR (eds) Pistachio Production Manual. University of California, Agricultural and Natural Resources Publication. No. 3545, pp 17–19.
Gaspar, T.H., Penel, C., Hagega, D., & Greppin, H. (1991) Peroxidases in plant growth, differentiation and development processes In: Lobarzewski J, Greppin H, Penel C. and Gaspar TH (eds), Biochemical, Molecular and Physiological Aspects of Plant Peroxidases. University de Geneve, Switzerland, pp. 249–280.
Gaspar, T.H., Penel, C.L., Thorpe, T., & Grappin, H. (1982) Chemistry and biochemistry of peroxidases, in: TH Gaspar, CL Penel, T Thorpe, H Grappin (Eds.), Peroxidases, A Survey of Their Biochemical and Physiological Roles in Higher Plants, University de Geneve Press, Geneva, pp. 10–60.
Goldschmidt, E.E., & Sadka, A. (2021). Yield Alternation: Horticulture, Physiology, Molecular Biology, and Evolution. 8
th chapter. In:
Horticultural Reviews, Vol. 48, Edited by Ian Warrington. John Wiley & Sons, Inc.
https://doi.org/10.1002/9781119750802.ch8
Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants.
International Journal of Molecular Sciences, 14, 9643–9684.
https://doi.org/10.3390/ijms14059643
Hoblyn, T.N., Grubb, N.H., Painter, A.C., & Wates, B.L. (1936). Studies in biennial bearing. Journal of Pomology and Horticultural Science, 14, 39-76. https://doi.org/10.1080/03683621.1937.11513464.
Hossain, S.M.D. (2019). Present scenario of global salt affected soils, its management and importance of salinity research. International Research Journal of Biological Sciences, 1(1), 1-3.
Hozain, M.I., Salvucci, M.E., Fokar, M. & Holaday, A.S. (2010). The differential response of photosynthesis to high temperature for a boreal and temperate
Populus species relates to differences in Rubisco activation and Rubisco activase properties.
Tree Physiology, 30,
32–44.
https://doi.org/10.1093/treephys/tpp091
Irigoyen, J.J., Emerich, D.W., & Sanchez-Dias, M. (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (
Medicago sativa) plants.
Physiologia Plantarum, 84, 55-60.
https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
Kaiser, E., Kromdijk, J., Harbinson, J., Heuvelink, E., & Marcelis, L. F. (2017). Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. Annals of Botany, 119(1), 191–205. https://doi.org/10.1093/aob/mcw226.
Kamiab, F., Talaie, A., Javanshah, A., Khezri, M., & Khalighi, A. (2012). Effect of long-term salinity on growth, chemical composition and mineral elements of pistachio (Pistacia vera cv. Badami-Zarand) rootstock seedlings. Annals of Biological Research, 3(12), 5545–5551.
Khayyat, M., Arefnezhad, Z., Sayyari Zahan, M.H., & Zamani, Gh. (2018). The first report on alternate bearing of barberry (Berberis vulgaris L.): change in total carbohydrate and phenolic contents. Journal of Horticultural Research, 26(1), 45–52. https://doi.org/10.2478/johr-2018-0005.
Khezri, M., Heerema, R., Brar, G., & Ferguson, L. (2020). Alternate bearing in pistachio (Pistacia vera L.): A review. Trees, 1-14. https://doi.org/10.1007/s00468-020-01967-y
Kumar, R.R., Goswami, S., Sharma, S.K., Singh, K., Gadpayle, K.A., Kumar, N., & Rai, R.D. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry, 4(4), 83-91. https://doi.org/10.5897/IJPPB12.008
Levitt, J. (1980). Responses of Plants to Environmental Stresses, vol. I, Academic Press, New York, 1980, pp. 347–470.
Miri, D., Akrimi, R., & Abidi, W. (2023). Agro-physiological responses of the pistachio (
Pistacia vera L., cv. Mateur) to partial root drying (PRD) irrigation.
Journal of Horticulture and Postharvest Research,
6(3), 271-286.
https://doi.org/10.22077/jhpr.2023.6231.1312
Moore, C. E., Meacham-Hensold, K., Lemonnier, P., Slattery, R. A., Benjamin, C., Bernacchi, C. J., ... & Cavanagh, A. P. (2021). The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems.
Journal of Experimental Botany, 72(8), 2822-2844.
https://doi.org/10.1093/jxb/erab090
Okay, Y., Gunes, N.T. & Koksal, A.I. (2011). Free endogenous growth regulators in pistachio (Pistacia vera L.). African Journal of Agricultural Research, 6, 1161–1169. https://doi.org/10.5897/AJAR10.1155
Pakdaman, N., Moradi, M., Javanshah, A., Abdolahi Ezzatabadi, M., Nadi, M., & Saberi, N. (2023). The effect of using peracetic acid in the processing terminal to reduce microbial contamination of pistachio.
Journal of Horticulture and Postharvest Research,
6(4), 361-370.
https://doi.org/10.22077/jhpr.2023.6689.1328
Prasad, T.K., Anderson, M.D., Martin, B.A. & Stewart, C.R. (1994). Evidence for chilling-induced oxidative stress in maize seedlings and regulatory role of hydrogen peroxide.
Physiologia Plantarum, 97, 381–387.
https://doi.org/10.1105/tpc.6.1.65
Putter, J. (1974). Peroxidases. In: Bergmeyer H.U. (ed.), Methods of Enzymatic Analysis. Vol. 2. Academic Press, New York, pp. 685–690.
Rahneshan, Z., Nasibi, F., & Moghadam, A. A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (
Pistacia vera L.) rootstocks.
Journal of Plant Interactions, 13(1), 73-82. h
ttps://doi.org/10.1080/17429145.2018.1424355
Sade, B., Soylu, S., & Yetim, E. (2011). Drought and oxidative stress.
African Journal of Biotechnology, 10, 11102–11109. https://doi.org/
10.5897/AJB11.1564
Singleton, V.L., & Rossi, J.A. Jr. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158. https://doi.org/10.5344/ajev.1965.16.3.144
Song, Y., Chen, Q., Ci, D., Shao, X., & Zhang, D. (2014). Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biology, 14(1), 1-20. https://doi.org/10.1186/1471-2229-14-111
Teskey, R., Wertin, T., Bauweraerts, I., Ameye, M., McGuire, M. A., & Steppe, K. (2015). Responses of tree species to heat waves and extreme heat events. Plant, Cell & Environment, 38(9), 1699-1712.
Vemmos, S. N. (2010). Alternate bearing and the possible role of carbohydrates in bud abscission of pistachio (Pistacia vera L.). In XIV GREMPA Meeting on Pistachios and Almonds, Zaragoza: CIHEAM/FAO/AUA/TEI Kalamatas/NAGREF, Options Méditerranéennes, Série A, Séminaires Méditerranéens (Vol. 94, pp. 9-18).
Wood, B.W. (1989). Pecan production responds to root carbohydrates and rootstock. Journal of American Society for Horticultural Science, 114, 223-228.
Zeraatgar, H., Davarynejad, G. H., Moradinezhad, F., & Abedi, B. (2019). Preharvest application effect of salicylic acid and calcium nitrate on physicochemical characteristics of fresh jujube fruit (Ziziphus jujuba. Mill) during storage. Erwerbs-Obstbau, 61(2). https://doi.org/10.1007/s10341-018-0408-4