Document Type : Original Article

Authors

1 Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, Mexico

2 Research Center for Food and Development, Cuauhtemoc, Chihuahua, Mexico

3 Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico

Abstract

Purpose: Changes in color, vitamin C, b-carotene, lycopene, a- and d-tocopherol were followed during ripening and senescence of mature-green tomatoes (Lycopersicon esculentum Mill cv. Rhapsody) maintained at 22 °C and 85% RH for up to 5 weeks.  Research method: Tomatoes were harvested at the mature-green stage and valuated for color and the content of selected bioactive compounds (β-carotene, lycopene, α- and δ- tocopherols and vitamin C) during simulated retail market conditions (22 °C and 85% RH for 5 weeks). Findings: The tested tomato cultivar had a long postharvest life under the tested conditions, as the fruit maintained in edible conditions during the whole storage period. Vitamin C, lycopene, a- and d-tocopherol presented their highest values after about 14 to 18 days after harvest, and b-carotene maintained a maximum content (0.84 mg/100 g) 8 days after harvest. The maximum content of vitamin C, lycopene, a- and d-tocopherol were 0.036, 30, 0.27 and 0.0045 mg 100 g-1 of fresh tissue, respectively. Our results indicate that 'Rhapsody' tomatoes harvested at the mature-green stage have shown important levels of vitamin E (tocopherols), C, and carotenoids (lycopene and b-carotene) after 14 to 17 days from harvest. Research limitations: There were no limitations. Originality/Value: This study evaluated the changes in the content of bioactive compounds in long shelf life tomatoes, of great importance for human health, for up to 5 weeks to determine the ideal moment for their consumption.

Keywords

Main Subjects

Abushita, A.A., Daood, G.H., & Biacs, A.P. (2000). Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. Journal of Agricultural and Food Chemistry, 48, 2075-2081. https://doi.org/10.1021/jf990715p.
Bal, E. (2021). Storage life extension of cherry tomato by alginate-based edible coating in combination with UV-C treatment. Journal of Horticulture and Postharvest Research, 4(4), 453-466. https://doi.org/10.22077/jhpr.2021.4390.1215.
Bianchi, A.N., Vitale, E., Guerretti, V., Palumbo, G., De Clemente, I.M., Vitale, L., Arena, C., & De Maio, A., (2023). Antioxidant characterization of six tomato cultivars and derived products destined for human consumption. Antioxidants, 12, 761. https://doi.org/10.3390/antiox12030761.
FAOSTAT. (2022). Food and agriculture organization of the united nations cropping database Retrieved from http://faostat3.fao.org/home/index.html
Figueira, J.A., Pereira, J.A., & Câmara J.S. (2017). Quantification of δ-, γ-and α-tocopherol in tomatoes using an improved liquid-dispersive solid-phase extraction combined with ultrahigh pressure liquid chromatography. Food Analytical Methods, 10, 2507-2517. https://doi.org/10.1007/s12161-017-0799-0.
Flores, P., Sánchez, E., Fenoll, J., & Hellín, P. (2017). Genotypic variability of carotenoids in traditional tomato cultivars. Food Research International, 100, 510-516. http://dx.doi.org/10.1016/j.foodres.2016.07.014.
Ghavipour, M., Sotoudeh, G., & Ghorbani, M. (2015). Tomato juice consumption improves blood antioxidative biomarkers in overweight and obese females. Clinical Nutrition, 34(5), 805-809. http://dx.doi.org/10.1016/j.clnu.2014.10.012.
Guo, Y., Li, D., Liu, T., Liao, M., Li, Y., Zhang, W., Liu, Z., & Chen, M. (2022). Effect of overexpression of γ-tocopherol methyltransferase on α-tocopherol and fatty acid accumulation and tolerance to salt stress during seed germination in Brassica napus L. International Journal of Molecular Sciences, 23, 15933. https://doi.org/10.3390/ijms232415933.
Islam, F., Dash, P., & Das, S. (2023). Influence of cannonball tree (Couroupita guianensis Aubl.) leaf extract and electrolyzed oxidizing water on postharvest quality of tomato. Journal of Horticulture and Postharvest Research, 6(Issue 1), 27-42. https://doi.org/10.22077/jhpr.2022.5501.1286
Kefas, E. B, Aliyu, B., & Tashiwa, Y. I. (2024). Postharvest losses, causes and mitigation in tomato transportation: a systematic review. Journal of Horticulture and Postharvest Research, 7(3), 223-236. https://doi.org/10.22077/jhpr.2024.7460.1370.
Loayza, F.E., Brecht, J.K., Simonne, A.H., Plotto, A., Baldwin, E.A., Bai, J., & Lon‐Kan E. (2021a). A brief hot‐water treatment alleviates chilling injury symptoms in fresh tomatoes. Journal of the Science of Food and Agriculture, 101(1), 54-64. https://doi.org/10.1002/jsfa.10821
Loayza, F.E., Brecht, J.K., Simonne, A.H., Plotto, A., Baldwin, E.A., Bai, J., & Lon-Kan, E. (2021b). Color biogenesis data of tomatoes treated with hot-water and high temperature ethylene treatments. Data in Brief, 36, 107123.
Mazidi, M., Ferns, G.A., & Banach, M. (2020a). A high consumption of tomato and lycopene is associated with a lower risk of cancer mortality: results from a multi-ethnic cohort. Public Health Nutrition, 23(9), 1569-1575. https://doi.org/10.1017/S1368980019003227.
Mazidi, M., Katsiki, N., George, E.S., & Banach, M. (2020b). Tomato and lycopene consumption is inversely associated with total and cause-specific mortality: a population-based cohort study, on behalf of the International Lipid Expert Panel (ILEP). British Journal of Nutrition, 124(12), 1303-1310. https://doi.org/10.1017/S0007114519002150.
Mazón-Abarca, W.M., León-García, E., Ramírez De León, J.A., De La Cruz Medina, J., & García, H.S. (2022). Effect of hot water treatment on ripening of tomato var. TA234 silenced with the TomLoxB gene. CyTA Journal of Food, 20(1), 13-24. https://doi.org/10.1080/19476337.2021.2002418.
Pu, H., Shan, S., Wang, Z., Duan, W., Tian, J., Zhan, L., Li, J., Song, H., & Xu, X. (2020). Dynamic changes of DNA methylation induced by heat treatment were involved in ethylene signal transmission and delayed the postharvest ripening of tomato fruit. Journal of Agricultural and Food Chemistry, 68(33), 8976-8986. https://doi.org/10.1021/acs.jafc.0c02971.
Quinet, M., Angosto, T., Yuste-Lisbona, F.J., Blanchard-Gros, R., Bigot S., Martinez, J.P., & Lutts, S. (2019). Tomato fruit development and metabolism. Frontiers in Plant Science, 10, 475784. https://doi.org/10.3389/fpls.2019.01554.
Raiola, A., Tenore, G.C., Barone, A., Frusciante, L., & Rigano, M.M. (2015). Vitamin E content and composition in tomato fruits: Beneficial roles and bio-fortification. International Journal of Molecular Science, 16(12), 29250-29264. https://doi.org/10.3390/ijms161226163.
SAGARPA. (2017). Planeación agrícola nacional 2017-2030. Jitomate Mexicano - Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación.
Soto-Zamora, G., Yahia, E.M., Brecht, J.K., & Gardea, A. (2005). Effects of postharvest hot air treatments on the quality and antioxidant levels in tomato fruit. LWT-Food Science and Technology, 38(6), 657-663. https://doi.org/10.1016/j.lwt.2004.08.005.
Tilahun, S., Park, D.S., Taye, A.M., & Jeong, C.S. (2017). Effect of ripening conditions on the physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Food Science and Biotechnology, 26, 473-479. https://doi.org/10.1007/s10068-017-0065-7.
Tilahun, S., Park, D.S., Solomon, T., Choi, H.R., & Jeong, C.S. (2019). Maturity stages affect nutritional quality and storability of tomato cultivars. CyTA Journal of Food, 17(1), 87-95. https://doi.org/10.1080/19476337.2018.1554705.
USDA, United States Department of Agricultural. (2005). Tomatoes. Shipping point and market inspection instructions. Washington D.C.1-78.
Vats, S., Bansal, R., Rana, N., Kumawat, S., Bhatt, V., Jadha, V.P., Kale, V., Sathe, A., Sonah, H., Jugdaohsingh, R., Sharma, T.R., & Deshmukh, R. (2022). Unexplored nutritive potential of tomato to combat global malnutrition. Critical Reviews in Food Science and Nutrition, 62(4), 1003-1034. https://doi.org/10.1080/10408398.2020.1832954.
Yahia, M.E., Contreras-Padilla, M., & Gonzalez-Aguilar, G., (2001). Ascorbic acid content in relation to ascorbic acid oxidase activity and polyamine content in tomato and bell pepper fruits during development, maturation and senescence. LWT - Food Science and Technology, 34(7), 452-457. https://doi.org/10.1006/fstl.2001.0790.
Yahia, E.M., Soto-Zamora, G., Brecht, J.K., & Gardea, A. (2007). Postharvest hot air treatment effects on the antioxidant system in stored mature-green tomatoes.  Postharvest Biology and Technology, 44(2), 107-115. https://doi.org/10.1016/j.postharvbio.2006.11.017.
Yahia, E.M., Soto-Zamora, G., Brecht, J.K., & Gardea, A. (2005). The effects of postharvest hot air treatments in low O2 atmosphere on the quality and antioxidant levels in tomato fruit. Acta Horticulturae, 857, 425-432. https://doi.org/10.1016/j.postharvbio.2006.11.017.
Widjaja, G., Rudiansyah, M., Sultan, M.Q., Ansari, M.J., Izzat, S.E., Al Jaber, M.S., Kzar, H.H., Mustafa, Y.F., Hammid, A.T., Jalil, A.T., & Aravindhan, S. (2022). Effect of tomato consumption on inflammatory markers in health and disease status: A systematic review and meta-analysis of clinical trials. Clinical Nutrition. ESPEN, 50, 93-100. https://doi.org/10.1016/j.clnesp.2022.04.019.