Document Type : Original Article

Authors

1 Department of Horticulture, Durban University of Technology, PO Box 1334, Durban 4000, South Africa

2 Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa

Abstract

Purpose: The study aimed to explore different extraction methods, extraction solvents, as well as solvent/water mixtures that could potentially yield(s) the best growth-enhancing, yield- and quality-promoting effects of Moringa oleifera leaf extracts (MLEs), when applied foliarly to tomatoes and peppers. Research Method: This study was laid out following a complete randomized design with three replications. Foliar application of MLEs tested included: control, aqueous (hot water, MLE HW), aqueous (cold water, MLE CW), ethanolic (MLE ETH) and methanolic (MLE METH) extracts. These treatments were repeatedly sprayed onto the leaves of selected plants, from two weeks after transplanting in weekly intervals until fruit set. Findings: Foliar application of all MLEs significantly enhanced growth of both pepper and tomato plants compared with the control. MLE HW application positively affected yield parameters, followed by MLE ETH and MLE METH. All MLEs significantly enhanced the colour coordinate a* and TSS, excluding MLE CW. Carotenoids in red peppers were significantly higher, following all MLE treatments, excluding the MLE CW, while in red tomatoes MLEs enhanced lycopene and β-carotene content. The concentration of Vitamin C was also significantly enhanced by MLE application to peppers, while in tomatoes, only MLE METH and MLE ETH positively altered the fruit Vit C concentration. These results generally prove that MLE application could potentially be used to improve crop production and their nutritive value. Research limitations: There were no limitations identified. Originality/Value: The results obtained in this study highlight the potential MLEs, particularly hot water MLE, to enhance growth, yield and nutritional quality of pepper and tomato, without compromising human health and environmental sustainability.

Keywords

Main Subjects

Abd El-Mageed, T. A., Semida, W. M., & Rady, M. M. (2017). Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agricultural Water Management, 193, 46–54. https://doi.org/10.1016/j.agwat.2017.08.004
Abdel-Rahman, S. S. A., & Abdel-Kader, A. A. S. (2020). Response of Fennel (Foeniculum vulgare, Mill) plants to foliar application of moringa leaf extract and benzyladenine (BA). South African Journal of Botany, 129, 113–122. https://doi.org/10.1016/j.sajb.2019.01.037
Anwar, F., Latif, S., Ashraf, M., & Gilani, A. H. (2007). Moringa oleifera: a food plant with multiple medicinal uses. Phytotherapy Research, 21(1), 17–25. https://doi.org/10.1002/ptr.2023
Atzmon, N., & van Staden, J. (1993). The Effect of Zeatin and iso-Pentenyladenine on Root Growth of Pinus pinea L. Journal of Plant Physiology, 141(3), 366–369. https://doi.org/10.1016/S0176-1617(11)81749-9
Bae, H., Jayaprakasha, G. K., Crosby, K., Yoo, K. S., Leskovar, D. I., Jifon, J., & Patil, B. S. (2014). Ascorbic acid, capsaicinoid, and flavonoid aglycone concentrations as a function of fruit maturity stage in greenhouse-grown peppers. Journal of Food Composition and Analysis, 33(2), 195–202. https://doi.org/10.1016/j.jfca.2013.11.009
Basra, S. M. A., & Lovatt, C. J. (2016). Exogenous applications of moringa leaf extract and cytokinins improve plant growth, yield, and fruit quality of cherry tomato. HortTechnology, 26(3), 327–337. https://doi.org/10.21273/HORTTECH.26.3.327
Boonkasem, P., Sricharoen, P., Techawongstein, S., & Chanthai, S. (2015). Determination of ascorbic acid and total phenolics related to the antioxidant activity of some local tomato (Solanum lycopersicum) varieties. Der Pharma Chemica, 7(4).
Busani, M., Patrick, J. M., Arnold, H., & Voster, M. (2011). Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African Journal of Biotechnology, 10(60), 12925–12933. https://doi.org/10.5897/AJB10.1599
Castro-Puyana, M., Marina, M. L., & Plaza, M. (2017). Water as green extraction solvent: Principles and reasons for its use. Current Opinion in Green and Sustainable Chemistry, 5, 31–36. https://doi.org/10.1016/j.cogsc.2017.03.009
Cheema, Z. A., Farooq, M., & Khaliq, A. (2013). Application of allelopathy in crop production: Success story from Pakistan. In Allelopathy: Current Trends and Future Applications. https://doi.org/10.1007/978-3-642-30595-5_6
Cömert, E. D., Mogol, B. A., & Gökmen, V. (2020). Relationship between color and antioxidant capacity of fruits and vegetables. Current Research in Food Science, 2, 1–10. https://doi.org/10.1016/j.crfs.2019.11.001
Culver, M., Fanuel, T., & Chiteka, A. Z. (2012). Effect of moringa extract on growth and yield of tomato. Greener Journal of Agricultural Sciences, 2(5).
Diouf, S., Sambou, A., & Cisse, A. (2023). Agro-morphological characterization of four varieties of cucumber from Cucumis sativus L. and Cucumis metuliferus E. Mey. Ex Naudin in Senegal. Journal of Horticulture and Postharvest Research, 6(Issue 2), 131-144. https://doi.org/10.22077/jhpr.2023.5822.1300
Dorais, M., Ehret, D. L., & Papadopoulos, A. P. (2008). Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochemistry Reviews, 7(2), 231–250. https://doi.org/10.1007/s11101-007-9085-x
El–Hamied, S. A. A., & El-Amary, E.-A. (2015). Improving growth and productivity of “Pear” trees using some natural plants extracts under north sinai conditions. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 8(1).
Foidl, N., Makkar, H. P. S., & Becker, K. (2001). The potential of Moringa oleifera for agricultural and industrial uses. What development potential for Moringa products? In Dar Es Salaam: Vol. October 20.
Friedman, M. (2013). Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. Journal of Agricultural and Food Chemistry, 61(40), 9534–9550. https://doi.org/10.1021/jf402654e
Gopalakrishnan, L., Doriya, K., & Kumar, D. S. (2016). Moringa oleifera: A review on nutritive importance and its medicinal application. Food Science and Human Wellness, 5(2), 49–56. https://doi.org/10.1016/j.fshw.2016.04.001
Goordeen, A., & Mohammed, M. (2021). Growth, development, maturation indices, proximate and mineral composition of moringa (Moringa oleifera). Journal of Horticulture and Postharvest Research, 4(Issue 4), 427-438. https://doi.org/10.22077/jhpr.2021.4296.1205
Guil-Guerrero, J. L., Martínez-Guirado, C., del Mar Rebolloso-Fuentes, M., & Carrique-Pérez, A. (2006). Nutrient composition and antioxidant activity of 10 pepper (Capsicum annuun) varieties. European Food Research and Technology, 224(1), 1–9. https://doi.org/10.1007/s00217-006-0281-5
Hassanein, A. M. A., & Al-Soqeer, A. A. (2018). Morphological and genetic diversity of Moringa oleifera and Moringa peregrina genotypes. Horticulture, Environment, and Biotechnology, 59(2), 251–261. https://doi.org/10.1007/s13580-018-0024-0
Hawthorne, S. B., Yang, Yu., & Miller, D. J. (1994). Extraction of Organic Pollutants from Environmental Solids with Sub- and Supercritical Water. Analytical Chemistry, 66(18), 2912–2920. https://doi.org/10.1021/ac00090a019
Hayat, K., Hussain, S., Abbas, S., Farooq, U., Ding, B., Xia, S., Jia, C., Zhang, X., & Xia, W. (2009). Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Separation and Purification Technology, 70(1), 63–70. https://doi.org/10.1016/j.seppur.2009.08.012
Hornero-Méndez, D., & Mínguez-Mosquera, M. I. (2001). Rapid spectrophotometric determination of red and yellow isochromic carotenoid fractions in paprika and red pepper oleoresins. Journal of Agricultural and Food Chemistry, 49(8), 3584–3588. https://doi.org/10.1021/jf010400l
Hounsome, N., Hounsome, B., Tomos, D., & Edwards‐Jones, G. (2008). Plant metabolites and nutritional quality of vegetables. Journal of Food Science, 73(4). https://doi.org/10.1111/j.1750-3841.2008.00716.x
Iqbal, J., Irshad, J., Bashir, S., Khan, S., Yousaf, M., & Shah, A. N. (2020). Comparative study of water extracts of Moringa leaves and roots to improve the growth and yield of sunflower. South African Journal of Botany, 129, 221–224. https://doi.org/10.1016/j.sajb.2019.06.032
Justin Packia Jacob, S., & Shenbagaraman, S. (2011). Evaluation of antioxidant and antimicrobial activities of the selected green leafy vegetables. International Journal of PharmTech Research, 3(1).
Mahmood, K. T., Mugal, T., & Haq, I. U. (2010). Moringa oleifera: A natural gift-a review. Journal of Pharmaceutical Sciences and Research, 2(11).
Makkar, H. P. S., Francis, G., & Becker, K. (2007). Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal, 1(9), 1371–1391. https://doi.org/10.1017/S1751731107000298
Matshediso, P. G., Cukrowska, E., & Chimuka, L. (2015). Development of pressurised hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts. Food Chemistry, 172. https://doi.org/10.1016/j.foodchem.2014.09.047
Mbuyisa, S., Bertling, I., & Ngcobo, B. (2023). Impact of foliar-applied plant extracts on growth, physiological and yield attributes of the potato (Solanum tuberosum L.). Agronomy, 14(1), 38. https://doi.org/10.3390/agronomy14010038
Miller, D. J., & Hawthorne, S. B. (1998). Method for determining the solubilities of hydrophobic organics in subcritical water. Analytical Chemistry, 70(8), 1618–1621. https://doi.org/10.1021/ac971161x
Moyo, B., Masika, P.J., Hugo, A. & Muchenje, V. (2011). Nutritional characterization of moringa (Moringa oleifera Lam.) leaves. African Journal of Biotechnology10(60), 12925-12933. https://doi.org/10.5897/ajb10.1599 
Mustafa, A., & Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta, 703(1), 8–18. https://doi.org/10.1016/j.aca.2011.07.018
Nagata, M., & Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi, 39(10), 925–928. https://doi.org/10.3136/nskkk1962.39.925
Nasir, M., Khan, A. S., Basra, S. M. A., & Malik, A. U. (2020). Improvement in growth, productivity and quality of ‘Kinnow’ mandarin fruit after exogenous application of Moringa oleifera leaf extract. South African Journal of Botany, 129, 263–271. https://doi.org/10.1016/j.sajb.2019.07.042
Ngcobo, B. L., & Bertling, I. (2021). Influence of foliar Moringa oleifera leaf extract (MLE) application on growth, fruit yield and nutritional quality of cherry tomato. Acta Horticulturae, 1306, 249–254. https://doi.org/10.17660/ActaHortic.2021.1306.31
Ong, E. S., Cheong, J. S. H., & Goh, D. (2006). Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials. Journal of Chromatography A, 1112(1–2), 92–102. https://doi.org/10.1016/j.chroma.2005.12.052
Phiri, C. (2010). Influence of Moringa oleifera leaf extracts on germination and early seedling development of major cereals. Agriculture and Biology Journal of North America, 1(5), 774–777. https://doi.org/10.5251/abjna.2010.1.5.774.777
Phiri, C., & Mbewe, D. N. (2010). Influence of Moringa oleifera leaf extracts on germination and seedling survival of three common legumes. International Journal of Agriculture and Biology, 12(2).
Pothitirat, W., Chomnawang, M. T., Supabphol, R., & Gritsanapan, W. (2010). Free radical scavenging and anti-acne activities of mangosteen fruit rind extracts prepared by different extraction methods. Pharmaceutical Biology, 48(2), 182–186. https://doi.org/10.3109/13880200903062671
Rao, A., & Rao, L. (2007). Carotenoids and human health. Pharmacological Research, 55(3), 207–216. https://doi.org/10.1016/j.phrs.2007.01.012
Rehman, H. U., Basra, S. M. A., Rady, M. M., Ghoneim, A. M., & Wang, Q. (2017). Moringa leaf extract improves wheat growth and productivity by affecting senescence and source-sink relationship. International Journal of Agriculture and Biology, 19(03), 479–484. https://doi.org/10.17957/IJAB/15.0316
Rocchetti, G., Castiglioni, S., Maldarizzi, G., Carloni, P., & Lucini, L. (2019). UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. International Journal of Food Science and Technology, 54(2). https://doi.org/10.1111/ijfs.13941
Salehi, B., Sharifi-Rad, R., Sharopov, F., Namiesnik, J., Roointan, A., Kamle, M., Kumar, P., Martins, N., & Sharifi-Rad, J. (2019). Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition, 62, 201–208. https://doi.org/10.1016/j.nut.2019.01.012
Siddhuraju, P., & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51(8). https://doi.org/10.1021/jf020444+
Sreelatha, S., Jeyachitra, A., & Padma, P. R. (2011). Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food and Chemical Toxicology, 49(6), 1270–1275. https://doi.org/10.1016/j.fct.2011.03.006
Topuz, A., & Ozdemir, F. (2007). Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. Journal of Food Composition and Analysis, 20(7), 596–602. https://doi.org/10.1016/j.jfca.2007.03.007
van Bavel, B., Rappe, C., Hartonen, K., & Riekkola, M.-L. (1999). Pressurised hot water/steam extraction of polychlorinated dibenzofurans and naphthalenes from industrial soil. The Analyst, 124(9), 1351–1354. https://doi.org/10.1039/a905283f
Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products, 44, 566–571. https://doi.org/10.1016/j.indcrop.2012.09.021
Wang, M., Simon, J. E., Aviles, I. F., He, K., Zheng, Q. Y., & Tadmor, Y. (2003). Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). Journal of Agricultural and Food Chemistry, 51(3). https://doi.org/10.1021/jf020792b
Yasmeen, A. (2011). Exploring the potential of moringa (Moringa oleifera) leaf extract as natural plant growth enhancer. Indian Forester, 3(5).
Zulfiqar, F., Casadesús, A., Brockman, H., & Munné-Bosch, S. (2020). An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Science, 295, 110194. https://doi.org/10.1016/j.plantsci.2019.110194