Document Type : Original Article

Authors

1 Department of Crop Science, Faculty of Agriculture, University of Nigeria, Nsukka, Nigeria

2 Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria

3 Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria

Abstract

Purpose: To address postharvest losses in the carrot supply chain caused by pathogenic fungi, this study evaluates the antifungal potential of ethanol extracts from Allium cepa, Zingiber officinale, Allium sativum, and Moringa oleifera against carrot spoilage fungi, including Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Fusarium oxysporum, and Fusarium solani. Research Method: Filtered plant extracts were obtained using ethanol extraction method. This study evaluated the efficacy of various plant extracts in reducing microbial load and inhibiting fungal growth on carrot roots using standard microbiological procedures, including agar well diffusion and broth microdilution techniques. Findings: The study demonstrated that ethanol extracts, particularly from ginger, significantly (p < 0.05) reduced fungal load on carrot roots. The inhibition zone analysis revealed that ginger and Moringa extracts, along with ketoconazole, effectively inhibited A. niger and A. fumigatus, with ketoconazole producing the largest inhibition zones. Ginger showed the highest antifungal effectiveness, with minimal inhibitory concentrations ranging from 31.25 mg/ml to 250 mg/ml, particularly against A. niger and A. fumigatus, demonstrating higher antifungal activity compared to other treatments. Garlic consistently exhibited an MIC of 250 mg/ml against all test fungi. Additionally, the minimum fungicidal concentration results highlighted ginger extract’s potent biocidal effects, especially against A. flavus, with an MIC of 62.5 mg/ml. Research limitations: The study is limited to in vitro assessments; field conditions may affect the efficacy of the extracts due to environmental factors. Originality/Value: This research highlights ginger’s potential as a natural antifungal agent, offering practical applications for improving carrot preservation and reducing postharvest losses.

Keywords

Main Subjects

Adl, E., Jahani, M., & Aminifard, M. H. (2024). Investigating the antifungal effects of essential oils on Aspergillus sp. in strawberry (Fragaria ananassa Duchesne) fruit. Journal of Horticulture and Postharvest Research, 7(2), 141–154. https://doi.org/10.22077/JHPR.2024.7065.1349
Ahmad, T., Cawood, M., Iqbal, Q., Ariño, A., Batool, A., Sabir Tariq, R. M., Azam, M., & Akhtar, S. (2019). Phytochemicals in Daucus carota and their health benefits—review article. Foods, 8(9), 424. https://doi.org/10.3390/FOODS8090424
Aisha, Kutama, & Kabir. (2016). Phytochemical screening and antifungal activity of Moringa oleifera on some selected fungi in Dutse, Jigawa State. Global Advanced Research Journal of Agricultural Science, 5(6), 243–248.
Alegbeleye, O., Odeyemi, O. A., Strateva, M., & Stratev, D. (2022). Microbial spoilage of vegetables, fruits and cereals. Applied Food Research, 2(1), 100122. https://doi.org/10.1016/j.afres.2022.100122
Alshammari, N. (2023). Mycotoxin source and its exposure causing mycotoxicoses. Bioinformation, 19(4), 348–357. https://doi.org/10.6026/97320630019348
Anyamaobi, P. O., Wokem, G. N., Bessie Enweani, I., Nwamaka Okosa, J., Emmanuel Opara, C., & Nwokeji, M. C. (2020). Antimicrobial effect of garlic and ginger on Staphylococcus aureus from clinical specimens in Madonna University Teaching Hospital, Nigeria. International Journal of Recent Scientific Research, 11(3), 37840–37845. https://doi.org/10.24327/ijrsr.2020.1103.5189
Arowora, K. A., & Adetunji, C. O. (2014). Antifungal effects of crude extracts of Moringa oleifera on Aspergillus niger v. tieghem associated with post harvest rot of onion bulb. SMU MEDICAL JOURNAL. https://worldveg.tind.io/record/52606
Bridgemohan, P., Goordeen, A., Mohammed, M., & Bridgemohan, R. S. H. (2020). Review of the agro-ecology, phytochemistry, postharvest technology and utilization of moringa (Moringa oleifera Lam.). Journal of Horticulture and Postharvest Research, 3(2), 311–332. https://doi.org/10.22077/JHPR.2020.3037.1116
Chrubasik, S., Pittler, M. H., & Roufogalis, B. D. (2005). Zingiberis rhizoma: a comprehensive review on the ginger effect and efficacy profiles. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 12(9), 684–701. https://doi.org/10.1016/J.PHYMED.2004.07.009
Committee for Antimicrobial Susceptibility Testing of the European Society of Clinical Microbiology, E., & Diseases, I. (2003). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clinical Microbiology and Infection, 9(8), 9-15. https://doi.org/10.1046/j.1469-0691.2003.00790.x
El-Samawaty, A. E. R. M. A., El-Wakil, D. A., Alamery, S., & Mahmoud, M. M. H. (2021). Potency of plant extracts against Penicillium species isolated from different seeds and fruits in Saudi Arabia. Saudi Journal of Biological Sciences, 28(6), 3294. https://doi.org/10.1016/J.SJBS.2021.02.074
Elik, A., Yanık, D. K., Yanik, D. K., Guzelsoy, N. A., Yavuz, A., & Gogus, F. (2019). Strategies to reduce post-harvest losses for fruits and vegetables. International Journal of Scientific and Technological Research. https://doi.org/10.7176/JSTR/5-3-04
Goordeen, A., & Mohammed, M. (2021). Growth, development, maturation indices, proximate and mineral composition of moringa (Moringa oleifera). Journal of Horticulture and Postharvest Research, 4(4), 427-438. https://doi.org/10.22077/jhpr.2021.4296.1205
Grzanna, R., Lindmark, L., & Frondoza, C. G. (2005). Ginger--an herbal medicinal product with broad anti-inflammatory actions. Journal of Medicinal Food, 8(2), 125–132. https://doi.org/10.1089/JMF.2005.8.125
Habiba, U., & Yasmeen, H. (2023). Article 7 Part of the Alternative and Complementary Medicine Commons Recommended Citation Recommended Citation Afzal, I. Journal of Bioresource Management, 10(4). https://corescholar.libraries.wright.edu/jbm
Harcourt, P. (2015). Antimicrobial activity of the leaf and seed extracts of Moringa Oleifera on some bacteria isolates. Journal of Medical Science and Clinical Research, 3(1), 3904–3912. https://worldveg.tind.io/record/53698
Hayter, A. J. (1986). The maximum familywise error rate of Fisher’s least Significant difference test. Journal of the American Statistical Association, 81(396), 1000. https://doi.org/10.2307/2289074
Irkin, R., & Korukluoglu, M. (2007). Control of Aspergillus niger with garlic, onion and leek extracts. African Journal of Biotechnology, 6(4), 384–387.     https://www.ajol.info/index.php/ajb/article/view/56223
Liu, K., Zhou, X., & Fu, M. (2017). Inhibiting effects of epsilon-poly-lysine (ε-PL) on Pencillium digitatum and its involved mechanism. Postharvest Biology and Technology, 123, 94–101. https://doi.org/10.1016/J.POSTHARVBIO.2016.08.015
Magaldi, S., Mata-Essayag, S., Hartung De Capriles, C., Perez, C., Colella, M. T., Olaizola, C., & Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases, 8(1), 39–45. https://doi.org/10.1016/j.ijid.2003.03.002
Mandal, M. K., & Domb, A. J. (2024). Antimicrobial activities of natural bioactive polyphenols. Pharmaceutics 2024, Vol. 16, Page 718, 16(6), 718. https://doi.org/10.3390/PHARMACEUTICS16060718
Moradinezhad, F., & Ranjbar, A. (2023). Advances in postharvest diseases management of fruits and vegetables: A review. Horticulturae, 9(10), 1099. https://doi.org/10.3390/horticulturae9101099
Motegaonkar, S., Shankar, A., Tazeen, H., Gunjal, M., & Payyanad, S. (2024). A comprehensive review on carrot (Daucus carota L.): the effect of different drying methods on nutritional properties and its processing as value-added foods. Sustainable Food Technology, 2(3), 667–688. https://doi.org/10.1039/D3FB00162H
Ndu, O. O., Akah, P. A., Ochiogu, I. S., Ezike, A. C., & Mbaoji, F. N. (2008). Effects of ethanolic root and leaf extracts of Cissampelos mucronata on length of gestation period. Planta Medica, 74(09), PA131. https://doi.org/10.1055/S-0028-1084129
Odeyemi, O. (2019). Postharvest handling practices and losses of some major fruits sold in Abeokuta, South-western Nigeria. Nigeria Journal of Horticultural Society, 24(1), 113–121.
Oniha, M., Eni, A., Akinnola, O., Omonigbehin, E. A., Ahuekwe, E. F., & Olorunshola, J. F. (2021). In vitro antifungal activity of extracts of Moringa oleifera on phytopathogenic fungi affecting Carica papaya. Open Access Macedonian Journal of Medical Sciences, 9(A), 1081–1085. https://doi.org/10.3889/OAMJMS.2021.6794
Onyeagba, R. A., Ugbogu, O. C., Okeke, C. U., & Iroakasi, O. (2004). Studies on the antimicrobial effects of garlic (Allium sativum Linn), ginger (Zingiber officinale Roscoe) and lime (Citrus aurantifolia Linn). African Journal of Biotechnology, 3(10), 552–554. https://doi.org/10.5897/AJB2004.000-2108
Oyeleke, S. B., & Manga, S. B. (2008). Essentials of laboratory practicals in microbiology. In Minna, Nigeria: Tobest Publishers.
Paray, A. R., Rasool, A., Bhakat, M., Mohanty, T. K., Behare, P., Lone, S. A., Parry, U. R., Kumar, R., Sinha, R., Yadav, H. P., Rahim, A., Danish, Z., & Shah, N. (2018). Antimicrobial activity of crude aqueous extracts of Moringa oleifera, Azadirachta indica, Carica papaya, Tinospora cordifolia and Curcuma longa against certain bacterial pathogens. Journal of Pharmacognosy and Phytochemistry, 7(4).
Peng, H., Hu, H., Xi, K., Zhu, X., Zhou, J., Yin, J., Guo, F., Liu, Y., & Zhu, Y. (2022). Silicon nanoparticles enhance ginger rhizomes tolerance to postharvest deterioration and resistance to Fusarium solani. Frontiers in Plant Science, 13, 816143. https://doi.org/10.3389/FPLS.2022.816143/BIBTEX
Phan, A. D. T., Netzel, G., Chhim, P., Netzel, M. E., & Sultanbawa, Y. (2019). Phytochemical characteristics and antimicrobial activity of Australian grown garlic (Allium Sativum L.) cultivars. Foods 2019, Vol. 8, Page 358, 8(9), 358. https://doi.org/10.3390/FOODS8090358
Rahimi Kakolaki, M., Omidi, A., Rasooli, A., & Shekarforoush, S. S. (2024). In vitro antifungal activity   of barberry fruit extract (Berberis spp.) against Fusarium spp.. Journal of Horticulture and Postharvest Research, 7(Special Issue - Postharvest Technologies), 47-60. http://doi.org/10.22077/jhpr.2023.6783.1333
Rawal, P., & Singh Adhikari, R. (2016). Evaluation of antifungal activity of Zingiber officinale against Fusarium oxysporum f. sp. lycopersici. Advances in Applied Science Research, 7(2), 5–9. www.pelagiaresearchlibrary.com
Santo Grace, U., Sankari, M., & Gopi. (2017). Antimicrobial activity of ethanolic extract of Zingiber officinale – An in vitro study. Journal of Pharmaceutical Sciences and Research, 9(9), 1417–1419.
Sezer, F., Deniz, S., Sevim, D., Chaachouay, N., & Zidane, L. (2024). Plant-derived natural products: A source for drug discovery and development. Drugs and Drug Candidates 2024, Vol. 3, Pages 184-207, 3(1), 184–207. https://doi.org/10.3390/DDC3010011
Suharti, T., Nugraheni, Y. M. M. A., Suita, E., & Sumarni, B. (2020). Effect of plant extracts and chemical fungicide on viability and percentage of seed-borne fungal infection on calliandra (Calliandra callothyrsus) seed. IOP Conference Series: Earth and Environmental Science, 533(1), 012040. https://doi.org/10.1088/1755-1315/533/1/012040
Xi, K. Y., Xiong, S. J., Li, G., Guo, C. Q., Zhou, J., Ma, J. W., Yin, J. L., Liu, Y. Q., & Zhu, Y. X. (2022). Antifungal activity of ginger rhizome extract against Fusarium solani. Horticulturae, 8(11), 983. https://doi.org/10.3390/HORTICULTURAE8110983/S1