Document Type : Original Article

Authors

1 Department of Horticultural Sciences, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran

2 Medicinal and Industrial Plant Research Institute, Ardakan, Iran

Abstract

Purpose: Caladium bicolor is highly valued as both a landscape and indoor plant, primarily for its decorative appeal stemming from its diverse leaf shapes and vibrant, multicolored foliage. LED (light-emitting diode) lighting serves as a cost-efficient and potent means of promoting plant growth and development. The impact of different LED lights was investigated on callus induction, regeneration, and plantlet growth of two cultivars of Caladium bicolor (‘White’ and ‘Red’). Research Method: Leaf explants were cultured on Murashige and Skoog (MS) medium supplemented with 1.5 mg L-1 IBA and 1 mg L-1 BA and moved to racks equipped with various LED lighting (100% red lights (R), 100% blue lights (B), 50% blue + 50% red lights (B+R), and 100% white fluorescent lamps (W)). Findings: Results showed W light was the best for maximum callus induction, leaf number, and plantlet height in both cultivars. Red + blue LED light spectrum motivated proliferation percentage of callus in both cultivars as compared to other light spectra. Conservation of ‘White’ caladium plantlets in R and B light spectra resulted in no hyperhydric micro shoot formation incidences. When examining various growth characteristics, it was evident that the B+R light spectrum of ‘Red’ caladium showed the best performance, while the B light spectrum in both cultivars had the least favorable outcomes compared to all other light spectra. Research limitations: There was no limitation. Originality/Value: Our findings offer a deeper understanding of how the quality of LED light impacts the in vitro propagation of caladium, potentially enhancing the cultivation of these plantlets through specific spectral exposure.

Keywords

Main Subjects

Aalifar, M., Aliniaeifard, S., Arab, M., Mehrjerdi, M. Z., & Serek, M. (2020). Blue light postpones senescence of carnation flowers through regulation of ethylene and abscisic acid pathway-related genes. Plant Physiology and Biochemistry, 151,103–112
Adil, M., Abbasi, B. H., & ul Haq, I. (2019). Red light controlled callus morphogenetic patterns and secondary metabolites production in Withania somnifera L. Biotechnology Reports, 24, e00380. https://doi.org/10.1016/j.btre.2019.e00380
Ali, M., & Abbasi, B. H. (2014). Light-induced fluctuations in biomass accumulation, secondary metabolites production and antioxidant activity in cell suspension cultures of Artemisia absinthium L. Journal of Photochemistry and Photobiology B: Biology, 140, 223-227. https://doi.org/10.1016/j.jphotobiol.2014.08.008
 Bajwa, M. N., Khanum, M., Zaman, G., Ullah, M. A., Farooq, U., Waqas, M., Ahmad, N., Hano, C. & Abbasi, B. H. (2023). Effect of wide-spectrum monochromatic lights on growth, phytochemistry, nutraceuticals, and antioxidant potential of in vitro callus cultures of Moringa oleifera. Molecules, 28(3), 1497-1497. https://doi.org/10.3390/molecules28031497
Barbosa, L. M. P., Paiva Neto, V. B. D., Dias, L. L. C., Festucci-Buselli, R. A., Alexandre, R. S., Iarema, L., Finger, F.L., & Otoni, W. C. (2013). Biochemical and morpho-anatomical analyses of strawberry vitroplants hyperhydric tissues affected by BA and gelling agents. Revista Ceres, 60 (2), 152-160, https://doi.org/10.1590/S0034-737X2013000200002.
Bello-Bello, J. J., Martinez-Estrada, E., Caamal-Velazquez, J. H., & Morales-Ramos, V. (2016). Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). African Journal of Biotechnology, 15, 272–277. https://doi.org/10.5897/AJB2015.14662
Blidar, C. F., Chis, R. S., Bota, S. R., Serban, G., & Stanasel, O. D. (2021). Effect of light quality on in vitro germination, seedling growth and photosynthetic pigments production in wheat (Triticum aestivum L.). African Journal of Biotechnology, 20(7), 300-307. doi: 10.5897/AJB2021.17329
Cassel, A., & Curry, R. (2001). Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers, Plant Cell Tissue Organ Culture, 64 (2–3), 145–157. https://doi.org/10.1023/A:1010692104861.
Costine, B., Zhang, M., Pearson, B., & Nadakuduti, S. S. (2022). Impact of blue light on plant growth, flowering and accumulation of medicinal flavones in Scutellaria baicalensis and S. lateriflora. Horticulturae, 8(12), 1141.
da Silva, E. M., da Costa, G. G. S., Andrade, A. F., Ferreira, H. C. P., & Steiner, F. (2016). Light spectral quality on production of lettuce, cucumber and sweet pepper seedlings. Scientia Agraria Paranaensis, 15(4), 446-452. https://doi.org/10.18188/SAP.V15I4.13415
Dantas, L. A., Faria, P. S. A., de Melo, A. M., Rosa, M., Resende, E. C., Pereira, P. S., Silva, F. G., & Neto, A. R. (2021). Spectral quality as an eliciting agent in the production of phenolic compounds in the callus of Hyptis marrubioides Epling. Research, Society and Development, 10(9), 1-17. https://doi.org/10.33448/RSD-V10I9.18472
de Oliveira Prudente, D., de Souza, L. B., Paiva, R., Domiciano, D., Aparecida de Carvalho, P., & Nery, F. (2019). Goji berry (Lycium barbarum L.) in vitro multiplication improved by light-emitting diodes (LEDs) and 6-benzylaminopurine. In Vitro Cellular & Developmental Biology Plant, 55, 258–264.
Deng, Z., & Harbaugh, B. K. (2006). Dynamite Red'-A red fancy-leaved caladium for sunny landscapes and containers. HortScience, 41(2), 471.
Elsabaa, N.A., Ahmed, M.E., Younes, N.A., & Shehata, M.N. (2022). Effect of Led Spectrum on Potato Growth in Vitro. Journal of Plant Production, 13 (6), 273-279.
Fazal, H., Abbasi, B. H., Ahmad, N., Ali, S. S., Akbar, F., & Kanwal, F. (2016). Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L. Journal of Photochemistry and Photobiology B: Biology, 159, 1-7. https://doi.org/10.1016/j.jphotobiol.2016.03.008
Gao, H., Li, J., Ji, H., An, L., & Xia, X. (2018). Hyperhydricity-induced ultrastructural and physiological changes in blueberry (Vaccinium spp.), Plant Cell, Tissue and Organ Culture. 1–12, https://doi.org/10.1007/s11240-017-1361-x.
Hassanpour, H. (2021). Potential impact of red-blue LED light on callus growth, cell viability, and secondary metabolism of Hyoscyamus reticulatus. In Vitro Cellular & Developmental Biology – Plant, 1-10. https://doi.org/10.1007/S11627-021-10232-X
Isah, T. (2015). Adjustments to in vitro culture conditions and associated anomalies in plants, Acta Biologica Cracoviensia Series Botanica, 57(2), 9–28. https://doi.org/10.1515/ abcsb-2015-0026.
Isah, T. (2019). Changes in the biochemical parameters of albino, hyperhydric and normal green leaves of Caladium bicolor cv.“Bleeding hearts” in vitro long-term cultures. Journal of Photochemistry and Photobiology B: Biology, 191, 88-98.
Jafari, S., Nikbakht, A., Haghighi, M., & Shahin Varnousfaderani, S. (2023). Optimizing of the quality of rose grown with varying ratios and periods of Red: Blue light-emitting diodes in commercial greenhouse. Journal of Horticulture and Postharvest Research, 6(4), 331-348. https://doi.org/10.22077/jhpr.2023.6524.1322
Kazemi, D., Dehestani-Ardakani, M., Hatami, M., & Ghorbanpour, M. (2024). Research on the differences in phenotypic and photosynthetic biophysical parameters of begonias (Begonia rex) cultivars under various light spectral compositions. Journal of Plant Growth Regulation, 43(1), 106-121. https://doi.org/10.1007/s00344-023-11059-z
Khan, M. A., Ali, A., Mohammad, S., Ali, H., Khan, T., Mashwani, Z. U. R., Asif, J., & Ahmad, P. (2020). Iron nano modulated growth and biosynthesis of steviol glycosides in Stevia rebaudiana. Plant Cell, Tissue and Organ Culture, 143(1), 121-130. https://doi.org/10.1007/s11240-020-01902-6
Khan, T., Ullah, M. A., Garros, L., Hano, C., & Abbasi, B. H. (2019). Synergistic effects of melatonin and distinct spectral lights for enhanced production of anti-cancerous compounds in callus cultures of Fagonia indica. Journal of Photochemistry and Photobiology B: Biology, 190, 163-171.  https://doi.org/10.1016/j.jphotobiol.2018.10.010
Khurshid, R., Ullah, M. A., Tungmunnithum, D., Drouet, S., Shah, M., Zaeem, A., Hameed, S., Hano, C. & Abbasi, B. H. (2020). Lights triggered differential accumulation of antioxidant and antidiabetic secondary metabolites in callus culture of Eclipta alba L. Plos one, 15(6), e0233963.
Kim, S. J., Hahn, E. J., Heo, J. W., & Paek, K. Y. (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101(1-2), 143-151.  https://doi.org/10.1016/j.scienta.2003.10.003
Kokalis-Burelle, N., Brito, J. A., & Hartman, R. D. (2017). Susceptibility of Seven Caladium (Caladium × hortulanum) Cultivars to Meloidogyne arenaria, M. enterolobii, M. floridensis, M. incognita, and M. javanica.. Journal of Nematology, 49(4), 457.
Li, H., Xu, Z., & Tang, C. (2010). Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell, Tissue and Organ Culture, 103(2), 155-163. https://doi.org/10.1007/s11240-010-9763-z
Lin, K.-H., Huang, M.-Y., Huang, W.-D., Hsu, M.-H., Yang, Z.-W., & Yang, C.-M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. Capitata). Scientia Horticulturea. 150, 86-91. https://doi.org/10.1016/j.scienta.2012.10.002
Lin, Y., Li, J., Li, B., He, T., & Chun, Z. (2011). Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell, Tissue and Organ Culture, 105(3), 329-335. https://doi.org/10.1007/s11240-010-9871-9
Lotfi, M. (2022). Effects of monochromatic red and blue light-emitting diodes and phenyl acetic acid on in vitro mass production of Pyrus communis ‘Arbi’. Journal of Horticulture and Postharvest Research, 5(2), 119-128. https://doi.org/10.22077/jhpr.2021.4517.1229
Nacheva, L., Dimitrova, N., Koleva-Valkova, L.H., Stefanova, M., Ganeva, T., Nesheva, M., Tarakanov, I., & Vassilev, A. (2023). In vitro multiplication and rooting of plum rootstock ‘Saint Julien’ (Prunus domestica subsp. insititia) under fluorescent light and different LED spectra. Plants, 12(11), 21-25.
Nhut, D. T., Huy, N. P., Tai, N. T., Nam, N. B., Luan, V. Q., Hien, V. T., Tung, H. T., Vinh, B. T., & Luan, T. C. (2015). Light-emitting diodes and their potential in callus growth, plantlet development and saponin accumulation during somatic embryogenesis of Panax vietnamensis Ha et Grushv. Biotechnology & Biotechnological Equipment, 29(2), 299-308. https://doi.org/10.1080/13102818.2014.1000210
Pashkovskiy, P.P., Soshinkova, T.N., Korolkova, D.V. Kartashov, A. V., Zlobin, I. E., Lyubimov, V. Yu., Kreslavski, V. D., & Kuznetsov, V. V. (2018). The effect of light quality on the pro-/antioxidant balance, activity of photosystem II, and expression of light-dependent genes in Eutrema salsugineum callus cells. Photosynthesis Research, 136, 199-214. https://doi.org/10.1007/s11120-017-0459-7
Poudel, P. R., Kataoka, I., & Mochioka, R. (2008). Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell, Tissue and Organ culture, 92(2), 147-153. https://doi.org/10.1007/s11240-007-9317-1
Ramirez-Mosqueda, M. A., Iglesias-Andreu, L. G., & Bautista-Aguilar, J. R. (2017). The effect of light quality on growth and development of in vitro plantlet of Stevia rebaudiana Bertoni. Sugar Tech, 19(3), 331-336. https://doi.org/10.1007/s12355-016-0459-5
Rezaie, S., Dehestani-Ardakani, M., & Kamali, K. (2018). A new protocol for direct regeneration of stevia plant (Stevia rebaudiana Bertoni) by tissue culture techniques. Journal of Horticulture and Postharvest Research, 1(2), 97-104. https://doi.org/10.22077/jhpr.2018.1273.1010
Rojas-Martinez L., Visser R.G., & de Klerk G.J. (2010). The hyperhydricity syndrome: waterlogging of plant tissues as a major cause. Propagation of Ornamental Plants, 10(4), 169-175.
Santos-Tierno, R., Garcia, R., Fonseca, E. Santos-Tierno, R., Garcia, R., Fonseca, E., Faleiro, F., Moreira, D., Pacheco, G., & Mansur, E. (2021). Light quality and explant type modulate growth, antioxidant properties and bioactive compounds production of calluses of Passiflora setacea cv BRS Pérola do Cerrado. Plant Cell, Tissue and Organ Culture, 147, 635–646. https://doi.org/10.1007/s11240-021-02188-y
Sreedhar, R.V., Venkatachalam, L., & Neelwarne, B., (2009). Hyperhydricity-related morphologic and biochemical changes in Vanilla (Vanilla planifolia), Journal of Plant Growth Regulator, 28, 46-57. https://doi.org/10.1007/s00344-008-9073-4.
Stamps, R. H., & Savage, H. M. (2011, December). Effects of production shade levels and cultivar selection on potted and cut caladium performance in interiorscapes. In Proceedings of the Florida State Horticultural Society (Vol. 124, pp. 264-267).
Stepanova, A. Y., Solov'yova, A. I., & Salamaikina, S. A. (2020). Influence of spectral light composition on flavones formation in callus culture of Scutellaria baicalensis Georgi. Pharmacognosy Magazine, 16(67), 156-160.
Tůmová, L., Tůma, J., Megušar, K., & Doležal, M. (2010). Substituted pyrazinecarboxamides as abiotic elicitors of flavolignan production in Silybum marianum (L.) gaertn cultures in vitro. Molecules, 15(1), 331-340. https://doi.org/10.3390/molecules15010331
Ullah, M. A., Tungmunnithum, D., Garros, L., Hano, C., & Abbasi, B. H. (2019). Monochromatic lights-induced trends in antioxidant and antidiabetic polyphenol accumulation in in vitro callus cultures of Lepidium sativum L. Journal of Photochemistry and Photobiology B: Biology, 196, 111505. https://doi.org/10.1016/j.jphotobiol.2019.05.002
William, J., & Carpenter. (1990). Light and temperature govern germination and storage of caladium seed. HortScience, 25(1), 71-74. https://doi.org/10.21273/HORTSCI.25.1.71
Zhang, Y. S., Gu, S. J., Chen, J. J., & Cai, X. D. (2019). Effects of different nutrient solutions on the acclimatization of in vitro Caladium plantlets using a simplified hydroponic system. Sains Malays, 48, 1627-1633. https://doi.org/10.17576/JSM-2019-4808-08